
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Coded caching: Information theoretic bounds and asynchronism Coded caching: Information theoretic bounds and asynchronism

Hooshang Ghasemi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Ghasemi, Hooshang, "Coded caching: Information theoretic bounds and asynchronism" (2019). Graduate
Theses and Dissertations. 17451.
https://lib.dr.iastate.edu/etd/17451

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17451&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F17451&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17451?utm_source=lib.dr.iastate.edu%2Fetd%2F17451&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Coded caching: Information theoretic bounds and asynchronism

by

Hooshang Ghasemi

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Electrical Engineering (Communications and Signal Processing)

Program of Study Committee:
Aditya Ramamoorthy, Major Professor

Nicola Elia
Ahmed El-Sayed Kamal

Zhengdao Wang
Daniel Nordman

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Hooshang Ghasemi, 2019. All rights reserved.

www.manaraa.com

ii

DEDICATION

I dedicate this thesis to my wife Sara for her endless love.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . x

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

1.1 Coded Caching . 1

1.1.1 Lower Bounds on the Coded Caching . 5

1.1.2 Asynchronous Coded Caching . 5

CHAPTER 2. LOWER BOUNDS ON CODED CACHING 8

2.1 Background, Related Work and Summary of Contributions 10

2.1.1 Related work . 12

2.1.2 Summary of our contributions . 14

2.2 Lower Bound on R?(M) . 15

2.2.1 An analytic bound on the saturation number 38

2.2.2 Best lower bound for a fixed M . 42

2.3 Multiplicative Gap Between Upper and Lower Bounds 45

2.3.1 Region I: 0 ≤M ≤ max(1, N/K) . 47

2.3.2 Region II: max(1, N/K) < M ≤ N/2 . 48

2.3.3 Region III: N/2 < M ≤ N . 49

2.4 Lower Bounds on the Other Variants of the Coded Caching Problem 50

2.4.1 Caching in device to device wireless networks 50

www.manaraa.com

iv

2.4.2 Coded caching with multiple requests . 51

2.4.3 Decentralized coded caching . 55

2.5 Comparison with Existing Results . 55

2.5.1 Comparison with cutset bound . 55

2.5.2 Comparison with lower bound of Sengupta et al. (2015b) 57

2.5.3 Comparison with lower bound of Ajaykrishnan et al. (2015) 60

2.5.4 Comparison with results in Tian (2015) . 61

2.5.5 Numerical comparison of the various bounds 61

2.6 Conclusions and Future Work . 62

CHAPTER 3. ASYNCHRONOUS CODED CACHING . 66

3.1 Background, Related Work and Summary of Contributions 67

3.1.1 Main contributions . 68

3.1.2 Related work . 69

3.2 Problem Formulation and Preliminaries . 71

3.3 Offline Asynchronous Coded Caching . 74

3.3.1 Linear programming formulation . 75

3.3.2 Interpretation of feasible point of (3.1) as a coding solution 77

3.3.3 Dual decomposition based LP solution . 79

3.4 Online Asynchronous Coded Caching . 83

3.4.1 Necessity of coding across missing subfiles of a user 84

3.4.2 Recursive LP based algorithm . 85

3.5 Simulation Results and Comparisons with Prior Work 96

3.5.1 Offline scenario simulation . 97

3.5.2 Online scenario simulation . 97

3.5.3 Scenario where individual subfiles have deadlines 100

3.6 Conclusions and Future Work . 101

www.manaraa.com

v

APPENDIX A. PROOFS FOR LOWER BOUNDS . 108

A.0.1 Proof of Claim 1 . 109

A.0.2 Proof of Claim 3 . 110

A.0.3 Proof of Lemma 1 . 113

A.0.4 Proof of Claim 5 . 116

A.0.5 Complexity of the Algorithms 1, 2, 3, and 4 118

APPENDIX B. SUPPLEMENT FOR ASYNCHRONOUS CODED CACHING 121

B.0.1 Equivalence of LPs . 121

B.0.2 Quadratic Projection and Primal Recovery in Dual Decomposition 122

B.0.3 Linear Programming with Front Loading . 123

B.0.4 Counter-examples to Intuitive Heuristics . 124

www.manaraa.com

vi

LIST OF TABLES

Page

Table 2.1 The steps in Algorithm 2 after initialization when applied to Example 4. The steps

flow from the leftmost to the rightmost column, and in each column from the top

to the bottom row. 28

Table 3.1 List of variables used in the description . 76

Table 3.2 Execution time for solving the LP using our approach; we run 1000 iterations of

subgradient ascent. Columns 2 & 3 indicate the size of the associated flow network.

The table is ordered by the number of nodes in the flow network. 96

www.manaraa.com

vii

LIST OF FIGURES

Page

Figure 1.1 Average day traffic. 2

Figure 1.2 Block diagram of coded caching system. 3

Figure 1.3 Coded Caching strategy in Maddah-Ali and Niesen (2014) for N = 2 files

and K = 2 users with cache size M = 1 with all four possible user requests.

Each file is split into two subfiles of size 1/2, i.e., A = (A1, A2) and B =

(B1, B2). The scheme achieves rate R = 1/2. Observe that, while the

transmission from the server changes as a function of the user requests, the

cache contents do not. 4

Figure 1.4 America’s Biggest Traffic . 6

Figure 2.1 An example of a coded caching system with N = 9 files, K = 3 users. Note that the

proposed lower bound is better than the cutset bound and matches the achievable

rate points at multiples of N/K. 14

Figure 2.2 Problem instance for Example 2. For clarity of presentation, only the Wnew(u)

label has been shown on the edges. 16

Figure 2.3 Problem instances discussed in Example 3 where N = 4 and K = 3. The instance

(a) has reused more files than the corresponding cutset bound derived from instance

(b). 17

Figure 2.4 For a given node u ∈ T , its in-neighbors are denoted ul and ur. The corresponding

subtrees are denoted Tu(l) and Tu(r) and are shown enclosed in the dotted boxes. . 23

Figure 2.5 Problem instance corresponding to Example 4. There are three users and the server

contains four files. 26

www.manaraa.com

viii

Figure 2.6 (a) Problem instance P ′(T ′, α, β, L,N ′,K), (b) problem instance P (T , α, β, L,N,K)

where α = 2, β = 2 and K = 2. Both instances reach L = αmin(β,K) = 4 with

different number of files N = 3 and N ′ = 4. 30

Figure 2.7 Problem instances withN = K = 3. Instance P1 is non-atomic as the corresponding

lower bound can be obtained by summing the lower bounds from P2 and P3. . . . 32

Figure 2.8 Comparison of the proposed lower bound and the cutset bound. 35

Figure 2.9 Saturation path . 42

Figure 2.10 Problem instance associated with the lower bounds in Ajaykrishnan et al. (2015) . 59

Figure 2.11 The plot demonstrates the multiplicative gap between the achievable rate, Rc(M),

in Maddah-Ali and Niesen (2014) and lower bounds R?(M) using different lower

bounding techniques. For case II our lower bound results in the least multiplicative

gap. In case I, where N ≤ K, the multiplicative gap obtained by our proposed lower

bound is lower than the others for M ≥ 1. In the range 0 ≤M ≤ 1, Sengupta et al.

(2015b) provides a slightly better result. 62

Figure 3.1 Block diagram of the coded caching system. 68

Figure 3.2 Offline solution corresponding to the Example 11. The double-headed arrows show

the active time slots for each user. The transmitted equations are shown above the

timeline. 73

Figure 3.3 Interpretation of feasible point in (3.1) for Example 11. For readability, only

equations corresponding to user groups {1, 2} and {2, 3} are depicted. 77

Figure 3.4 Min-cost flow network associated with subproblem (3.4) corresponding to the second

user, N2(Γ2, ζ2, ζ3). The constraints and costs are given in the text. 83

Figure 3.5 Online solution corresponding to the Example 13. Note that the server is forced to

transmit W1,2 ⊕W1,3 at τ = 1. 84

Figure 3.6 An illustration of arrival times and user groups associated with the already submitted

equations upon time τ = 8 in Example 14. Associated with each user group in each

time slot, an equation has been submitted by the server at the same time slot. . . 87

www.manaraa.com

ix

Figure 3.7 Max flow network associated with LP in (3.8). 90

Figure 3.8 Convergence of primal recovery to the optimal solution for a system with N = K =

20, r = 1, and t = 2. Dashed line is the optimal value obtained by solving (3.1). . . 97

Figure 3.9 Centralized Placement in Maddah-Ali and Niesen (2014): (a) average coding gain

over all feasible offline problem instances, (b) feasibility probability of the online

algorithm conditioned on feasibility of the offline problem. The placement has been

fixed for all trials and at each trial a new arrival time and deadline is generated. In

this simulation, we set η0 = 0.4− 0.5
λ and η0 = 0.8− 0.2

λ in Case I and II respectively. 98

Figure 3.10 Decentralized placement scheme for N = K = 6, M = 2, and F = 100: (a) average

coding gain over all feasible offline problem instances, (b) feasibility probability of

the online algorithm conditioned on feasibility of the offline problem. At each trial

cache content of each user is placed randomly and uniformly. In this simulation,

we set η0 = 0.4− 0.5
λ and η0 = 0.8− 0.2

λ in Case I and Case II respectively. 99

Figure 3.11 Decentralized placement scheme with single chunk request for K = N = 6, M = 2,

and F = 20: (a) average coding gain over all feasible offline problem instances,

(b) feasibility probability of the online algorithm conditioned on feasibility of the

offline problem. For the scheme in Niesen and Maddah-Ali (2015) two probabilities

are reported. The first one is the probability that all requests are satisfied, and

the second one is the probability that a fixed request is satisfied (lines with circle

and diamond marks respectively). At each trial, the cache content of each user is

populated randomly and uniformly. In this simulation, we set η0 = 0.4 − 0.5
λ and

η0 = 0.8− 0.2
λ in Case I and Case II respectively. 100

A.1 Tree modification example . 110

B.1 A counterexample of LP solution with front loading. 124

B.2 A counterexample of immediate transmission with priority of closest deadline.

Available time slot for each user is determined by a two direction arrow. 125

www.manaraa.com

x

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. First and foremost, Dr. Aditya

Ramamoorthy for his kind support throughout my graduation career. I learned many things from

him.

I would also like to thank my committee members for their efforts and contributions to this

work: Dr. Nicola Elia, Dr. Ahmed E. Kamal, Dr. Zhengdao Wang, Dr. Daniel Nordman, Dr.

Ulrike Genschel, and Dr. Aditya Ramamoorthy.

The material in this work has appeared in part at the 2015, 2016 and the 2017 IEEE International

Symposium on Information Theory and IEEE Transaction on Information Theory. This dissertation

is supported in part by NSF grants CCF-1718470, CCF-1320416, and CCF-1149860.

www.manaraa.com

xi

ABSTRACT

Caching is often used in content delivery networks as a mechanism for reducing network traffic.

Recently, the technique of coded caching was introduced whereby coding in the caches and coded

transmission signals from the central server were considered. Prior results in this area demonstrate

that carefully designing the placement of content in the caches and designing appropriate coded

delivery signals from the server allow for a system where the delivery rates can be significantly

smaller than conventional schemes.

However, matching upper and lower bounds on the transmission rate have not yet been obtained.

In the first part of this dissertation we derive tighter lower bounds on the coded caching rate

than were known previously. We demonstrate that this problem can equivalently be posed as a

combinatorial problem of optimally labeling the leaves of a directed tree. Our proposed labeling

algorithm allows for significantly improved lower bounds on the coded caching rate. Furthermore,

we study certain structural properties of our algorithm that allow us to analytically quantify

improvements on the rate lower bound for general values of the problem parameters. This allows

us to obtain a multiplicative gap of at most four between the achievable rate and our lower bound.

The original formulation of the coded caching problem assumes that the file requests from

the users are synchronized, i.e., they arrive at the server at the same time. Several subsequent

contributions work under the same assumption. Furthermore, the majority of prior work does not

consider a scenario where users have deadlines. In the second part of the dissertation we formulate

the asynchronous coded caching problem where user requests arrive at different times. Furthermore,

the users have specified deadlines. We propose a linear program for obtaining its optimal solution.

However, the size of the LP (number of constraints and variables) grows rather quickly with the

number of users and cache sizes. To deal with this problem, we explore a dual decomposition based

www.manaraa.com

xii

approach for solving the LP under consideration. We demonstrate that the dual function can be

evaluated by equivalently solving a number of minimum cost network flow algorithms.

Moreover, we consider the asynchronous setting where the file requests are revealed to the

server in an online fashion. We propose a novel online algorithm for this problem building on our

prior work for the offline setting (where the server knows the request arrival times and deadlines

in advance). Our simulation results demonstrate that our proposed online algorithm allows for a

natural tradeoff between the feasibility of the schedule and the rate gains of coded caching.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Content distribution over the Internet is an important problem and is the core business of

several enterprises such as YouTube, Netflix, Hulu etc. The operation of such large scale systems

presents several challenges, including (but not limited to) storage of the data, ensuring reliable

availability and efficient content delivery. One commonly used technique to facilitate delivery

is content caching Wessels (2001). The main idea in “conventional content caching” is to store

relatively popular content in local memory either on the desired device or in a device at the edge

of the network such as an intermediate router. This local memory is referred to as the cache.

Upon request, this cached content is used to serve the clients, thus reducing the number of bits

transmitted from the server and thereby reducing overall network congestion. Note that even web

browsers, routinely cache the content of popular websites on a local machine to speed up the loading

of webpages.

The main idea of utilizing cache content for reducing data traffic in content delivery systems

during peak hours can be understood from graph in Figure 1.1. The network has highest and

lowest congestion at around 8 night and 4 morning respectively. In the conventional content caching

the popular contents will be placed at the caches during low congestion hours (e.g. 4 morning).

Therefore, the server is able to satisfy the requests during peak hours by transmitting fewer bits

since some part of each request might already exist in cache content of the users.

1.1 Coded Caching

Historically, content caching algorithms have attempted to optimize the placement of content

in the caches so that the average number of bits that are transmitted from the central server to the

end users is minimized Meyerson et al. (2001); Korupolu et al. (1999); Borst et al. (2010); Tan and

Massoulié (2013). This often requires some knowledge on the popularity of file requests Wolman

www.manaraa.com

2

Figure 1.1: Average day traffic.

et al. (1999); Breslau et al. (1999); Applegate et al. (2010) made by the users. Moreover, the typical

approach is to cache a certain fraction of the file and to obtain the remaining parts from the server

when the need arises. Coding in the content of the cache and/or coding in the transmission from

the server are typically not considered.

The work of Maddah-Ali and Niesen (2014) introduced the problem of coded caching, where

there is a server with N files and K users each with a cache of size M . The users are connected to

the server by a shared link (see Figure 1.2). In each time slot each user requests one of the N files.

There are two distinct phases in coded caching.

• Placement phase. In this phase, the content of caches is populated. This phase should not

depend on the actual user requests (which are assumed to be arbitrary). Typically, the

placement phase can be executed in the off-peak hours where the amount of network traffic

is low, e.g., around 4 a.m. in Figure 1.1.

• Delivery phase. In this phase, each of the K users request one of the N files. The server

transmits a signal of rate R over the shared link that simultaneously serves to satisfy the

demands of each of the users. This phase happens during busy hours, e.g., anytime between

10 a.m. till midnight at Figure 1.1.

www.manaraa.com

3

W1

Server

W2
...

WN

User 1 User 2 . . . User K

Z1

Cache 1

Z2

Cache 2

ZK

Cache K

Shared link

M l

Figure 1.2: Block diagram of coded caching system.

The work of Maddah-Ali and Niesen (2014) demonstrates that a carefully designed placement

scheme and a corresponding delivery scheme achieves a rate that is significantly lower than conventional

caching.

To better understand the coded caching idea, we brought the following example from Maddah-

Ali and Niesen (2014).

Example 1 Consider the case N = K = 2, so that there are two files, say A, B, and two users

each with cache memory of size M = 1 file.

The caching scheme is as follows (see Figure 1.3). We split both files A and B into two subfiles

of equal size, i.e., A = (A1, A2) and B = (B1, B2). In the placement phase, we set cache content

of the user one Z1 = (A1, B1) and the user two Z2 = (A2, B2). In words, each user caches one

exclusive part of each file. For the delivery phase, assume for example that user one requests file

A and user two requests file B. Given that user one already has subfile A1 of A, it only needs to

obtain the missing subfile A2, which is cached in the second user’s memory Z2. Similarly, user two

only needs to obtain the missing subfile B1, which is cached in the first user’s memory Z1. In other

words, each user has one part of the file that the other user needs.

The server can in this case simply transmit A2
⊕
B1, where

⊕
denotes bitwise XOR. Since

user one already has B1, it can recover A2 from A2
⊕
B1. Similarly, since user two already has

www.manaraa.com

4

A1, A2

B1, B2

A1, B1

A

A2, B2

B

A2
⊕
B1

A1, A2

B1, B2

A1, B1

A

A2, B2

A

A2
⊕
A1

A1, A2

B1, B2

A1, B1

B

A2, B2

A

B2
⊕
A1

A1, A2

B1, B2

A1, B1

B

A2, B2

B

B2
⊕
B1

Figure 1.3: Coded Caching strategy in Maddah-Ali and Niesen (2014) for N = 2 files and K = 2

users with cache size M = 1 with all four possible user requests. Each file is split into two subfiles

of size 1/2, i.e., A = (A1, A2) and B = (B1, B2). The scheme achieves rate R = 1/2. Observe

that, while the transmission from the server changes as a function of the user requests, the cache

contents do not.

A2, it can recover B1 from A2
⊕
B1. Thus, the signal A2

⊕
B1 received over the shared link helps

both users to effectively exchange the missing subfiles available in the cache of the other user. The

signals sent over the shared link for all other requests are depicted in Figure 1.3. One can see

that in all cases the signal is constructed using the same logic of exchanging the missing subfiles.

It is worth pointing out that in each case the server sends a single coded multicast transmission

to satisfy two (possibly different) user requests. Moreover, these coded multicasting opportunities

are available simultaneously for all four possible user requests. This availability of simultaneous

multicasting opportunities, enabled by careful content placement, is critical, since the placement

phase has to be performed without knowledge of the actual demands in the delivery phase.

www.manaraa.com

5

1.1.1 Lower Bounds on the Coded Caching

While coded caching promises very significant gains in transmission rates, at this point we do

not have matching upper and lower bounds on the (R,M) pairs for a given N and K. In the

first part of the dissertation our main contribution is in developing improved lower bounds on the

required rate for the coded caching problem. We demonstrate that the computation of this lower

bound can be posed as a combinatorial labeling problem on a directed tree. In particular, our

method generates lower bounds on αR+βM , where α and β are positive integers. We demonstrate

that a careful analysis of the underlying combinatorial structure of the problem allows us to obtain

significantly better lower bounds than those obtained in prior work Maddah-Ali and Niesen (2014);

Sengupta et al. (2015b); Ajaykrishnan et al. (2015). In addition, our machinery allows us to show

that the achievable rate of Maddah-Ali and Niesen (2014) is within a multiplicative factor of four

of our proposed lower bound. Our contributions to lower bound on coded caching is presented in

Chapter 2.

1.1.2 Asynchronous Coded Caching

While the coded caching scheme in Maddah-Ali and Niesen (2014) achieves a significant result,

the original formulation of the coded caching problem assumes that the user requests are synchronized,

i.e., all file requests from the users arrive at the server at the same time. From a practical

perspective, it is important to consider the case when the requests of the users are not synchronized;

we refer to this as the asynchronous coded caching problem.

In this case, a simple strategy would be to wait for the last request to arrive and then apply the

scheme of Maddah-Ali and Niesen (2014). Such a strategy will be quite good in terms of the overall

rate of transmission from the server. However, this may be quite bad for an end user’s experience,

e.g., the delay experienced by the users will essentially be dominated by the arrival time of the last

request. This delay can not be tolerated for example when the end user is watching a video from

the server. Our motivation to investigate this problem comes from the fact that most contents

delivered over the internet are videos. From Figure 1.4 it can be seen that video traffic contains

www.manaraa.com

6

Figure 1.4: America’s Biggest Traffic

more than half of the America’s traffic. Therefore, it is important to study asynchronous coded

caching.

In the second part of the dissertation we formulate and study the coded caching problem when

the user requests arrive at different times. Moreover, each user has a specific deadline by which

his/her demand needs to be satisfied. We examine both the offline and online versions of this

problem. In the offline version, the server knows the arrival times and deadlines of all users before

starting transmission. In the online case, the server is revealed information about the arrival times

and deadlines as time progresses. In the offline scenario, where the server knows the arrival times

and deadlines of each user in advance, we posed a linear programming (LP) problem which if

feasible, allows the server to determine a schedule of transmissions, such that each user can be

satisfied within its deadline. The size of the LP grows very quickly with the problem parameters

and solving it is impractical for large scale instances. We demonstrate that we can instead work

with the dual of an equivalent LP. The dual function can be evaluated by solving a set of minimum

cost network flow problems. Minimum cost network flow problems have been the subject of much

investigation in the optimization literature and large scale instances can be solved very quickly

www.manaraa.com

7

Kovacs (2015). We present results that indicate that significant time savings are obtained by

applying our approach. Moreover, our results indicate that the coded caching rate degrades quite

gracefully in the presence of asynchronism. We also present a novel heuristic for the online version of

the asynchronous coded caching problem. Our proposed algorithm is inspired by our LP formulation

for the offline scenario. Roughly speaking, we solve a new offline-like LP every time a new user

request comes to the server. Its solution is used to identify equations that simultaneously ”benefit”

multiple users. Here, the benefit to a given user takes into account the stringency of its deadline.

Our simulation results demonstrate that the probability that our online algorithm is feasible is

quite high and can be traded off for the rate gains of coded caching by varying a system-defined

threshold.

www.manaraa.com

8

CHAPTER 2. LOWER BOUNDS ON CODED CACHING

Content distribution over the Internet is an important problem and is the core business of

several enterprises such as YouTube, Netflix, Hulu etc. The operation of such large scale systems

presents several challenges, including (but not limited to) storage of the data, ensuring reliable

availability and efficient content delivery. One commonly used technique to facilitate delivery

is content caching Wessels (2001). The main idea in “conventional content caching” is to store

relatively popular content in local memory either on the desired device or in a device at the edge

of the network such as an intermediate router. This local memory is referred to as the cache.

Upon request, this cached content is used to serve the clients, thus reducing the number of bits

transmitted from the server and thereby reducing overall network congestion. Note that even web

browsers, routinely cache the content of popular websites on a local machine to speed up the loading

of webpages.

Historically, content caching algorithms have attempted to optimize the placement of content

in the caches so that the average number of bits that are transmitted from the central server to the

end users is minimized Meyerson et al. (2001); Korupolu et al. (1999); Borst et al. (2010); Tan and

Massoulié (2013). This often requires some knowledge on the popularity of file requests Wolman

et al. (1999); Breslau et al. (1999); Applegate et al. (2010) made by the users. Moreover, the typical

approach is to cache a certain fraction of the file and to obtain the remaining parts from the server

when the need arises. Coding in the content of the cache and/or coding in the transmission from

the server are typically not considered.

The work of Maddah-Ali and Niesen (2014) introduced the problem of coded caching, where

there is a server with N files and K users each with a cache of size M . The users are connected to

the server by a shared link (see Figure 1.2). In each time slot each user requests one of the N files.

There are two distinct phases in coded caching.

www.manaraa.com

9

• Placement phase. In this phase, the content of caches is populated. This phase should not

depend on the actual user requests (which are assumed to be arbitrary). Typically, the

placement phase can be executed in the off-peak hours where the amount of network traffic

is low.

• Delivery phase. In this phase, each of the K users request one of the N files. The server

transmits a signal of rate R over the shared link that simultaneously serves to satisfy the

demands of each of the users.

The work of Maddah-Ali and Niesen (2014) demonstrates that a carefully designed placement

scheme and a corresponding delivery scheme achieves a rate that is significantly lower than conventional

caching. While coded caching promises very significant gains in transmission rates, at this point

we do not have matching upper and lower bounds on the (R,M) pairs for a given N and K.

In this chapter our main contribution is in developing improved lower bounds on the required

rate for the coded caching problem. We demonstrate that the computation of this lower bound

can be posed as a combinatorial labeling problem on a directed tree. In particular, our method

generates lower bounds on αR + βM , where α and β are positive integers. We demonstrate that

a careful analysis of the underlying combinatorial structure of the problem allows us to obtain

significantly better lower bounds than those obtained in prior work Maddah-Ali and Niesen (2014);

Sengupta et al. (2015b); Ajaykrishnan et al. (2015). In addition, our machinery allows us to show

that the achievable rate of Maddah-Ali and Niesen (2014) is within a multiplicative factor of four of

our proposed lower bound. Our research in this area results to publishing a journal paper Ghasemi

and Ramamoorthy (2017c) and two conference papers Ghasemi and Ramamoorthy (2015, 2016).

This section is organized as follows. Section 2.1 discusses the background, related work and

summarizes the main contributions of our work. Section 2.2 presents our proposed lower bound

technique. The multiplicative gap between the achievable rate and our lower bound is outlined in

Section 2.3. Our proposed strategy also applies to certain variants of the coded caching problem

that have been discussed in the literature; this is explained in Section 2.4. There have been some

other approaches presented in the literature Maddah-Ali and Niesen (2014); Sengupta et al. (2015b);

www.manaraa.com

10

Ajaykrishnan et al. (2015) for improving the lower bound on the coded caching rate. We present

comparisons between our approach and the other approaches in Section 2.5. We conclude the

section with a discussion of opportunities for future work in Section 2.6.

2.1 Background, Related Work and Summary of Contributions

In a coded caching system there is a server that contains N files, denoted Wi, i = 1, . . . , N , each

of size F bits. There are K users that are connected to the central server by means of a shared link.

Each user has a local cache memory of size MF bits; we denote the cache content by the symbol

Zi (which is a function of W1, . . . ,WN). In each time slot, the i-th user demands the file Wdi where

di ∈ {1, . . . , N}. The coded caching problem has two distinct phases. In the placement phase, the

content of caches is populated; this phase should not depend on the actual user requests (which

are assumed to be arbitrary). In the delivery phase, the server transmits a potentially coded signal

that serves to satisfy the demands of each of the users. A pair (M,R) is said to be achievable if for

every possible request pattern (there are NK of them), every user can recover its desired file with

high probability for large enough F . We let R?(M) denote the infimum of all such achievable rates

for a given M .

The coded caching problem can be formally described as follows. Let [m] = {1, . . . ,m}, where

m is a positive integer. Let {Wn}Nn=1 denote N independent random variables (representing the

files) each uniformly distributed over [2F]. The i-th user requests the file Wdi , where di ∈ [N]. A

(M,R) system consists of the following.

• K caching functions, Zi , φi(W1, . . . ,WN) where φi : [2F]→ [2bFMc].

• A total of NK encoding functions ϕd1,...,dK (W1, . . . ,WN), so that the delivery phase signal

Xd1,...,dK , ϕd1,...,dK (W1, . . . ,WN). Here, ϕd1,...,dK : [2F]N → [2bFRc].

• For each delivery phase signal and each user, we define appropriate decoding functions. There

are a total of KNK of them. For the k-th user, we define µd1,...,dK ;k(Xd1,...,dK , Zk), where

www.manaraa.com

11

k = 1, . . . ,K so that decoded file Ŵd1,...,dK ;k , µd1,...,dK ;k(Xd1,...,dK , Zk). Here µd1,...,dK ;k :

[2bRF c]× [2bFMc]→ [2F].

The probability of error is defined as

max
(d1,...,dK)∈[N]K

max
k∈[K]

P (Ŵd1,...,dK ;k 6= Wdk).

Definition 1 The pair (M,R) is said to be achievable if for ε > 0, there exists a file size F large

enough so that there exists a (M,R) caching scheme with probability of error at most ε. We define

R?(M) = inf{R : (M,R) is achievable}.

In this setting, it is not too hard to see that the best that a conventional caching system can do is

to simply store an M/N fraction of each file in each of the caches. In order to satisfy the demands

of the user, the server has to transmit the remaining (1−M/N) fraction of each of the requested

files. Thus, the transmission rate (normalized by F) is given by

RU (M) = min(N,K)

1− M

N

. (2.1)

Note that min(N,K) is the transmission rate in the absence of any caching. In Maddah-Ali and

Niesen (2014), the factor (1 −M/N) is referred to as the local caching gain as it is gain that is

obtained purely from the cache, without any optimization of the transmission from the server. In

the setting where we perform nontrivial coding in the cache and delivery phase encoding functions,

Maddah-Ali and Niesen (2014) demonstrates that a carefully designed placement scheme and a

corresponding delivery scheme achieves a rate

RC(M) = K

1− M

N

 ·min

 1

1 +KM/N
,
N

K

, (2.2)

where M ∈ {0, N/K, 2N/K, . . . , N}. Other values of M are obtained by time-sharing between the

solutions for integer multiples of N/K.

www.manaraa.com

12

The factor 1
1+KM/N which definitely dominates when N ≥ K is referred to as the global caching

gain. It is to be noted that the global caching gain depends on the overall cache size across all

the users (owing to the term KM/N in the denominator) whereas the local caching gain only

depends on the per-user cache size (owing to the term 1−M/N). Furthermore, they compare their

achievable rate (cf. eq. (2.2)) to a cutset bound that can be expressed as follows.

R?(M) ≥ max
s∈{1,...,min(N,K)}

s− s

bN/sc
M

. (2.3)

The work of Maddah-Ali and Niesen (2014) also shows that the rate RC(M) is within a factor of

12 of the cutset bound for all values of N,K and M .

2.1.1 Related work

Coded caching is related to but different from the index coding problem Bar-Yossef et al.

(2011). In the index coding problem, there are N ′ sources such that i-th source has message Wi,

i = 1, . . . , N ′. There are K terminals, each of which has some subset of {W1, . . . ,WN ′} available.

In addition, each terminal requests a certain subset of the messages {W1, . . . ,WN ′}. The aim in

the index coding problem is to minimize the number of bits that are transmitted on the shared link

so that the demands of each user are satisfied. It is well recognized that the index coding problem

for arbitrary side information is a computationally hard problem where nonlinear codes may be

necessary Bar-Yossef et al. (2011); Lubetzky and Stav (2009). In particular, the optimal linear index

code corresponds to minimizing the rank of an appropriately defined matrix over a finite field. This

so called minrank problem Bar-Yossef et al. (2011) is also known to be computationally hard. It

can be observed that for a fixed but uncoded cache content and a fixed set of demands of the various

users, the problem of determining the optimal delivery phase signal in the coded caching problem

is equivalent to an index coding problem. Note however, that in the coded caching problem, we

allow the cache content to be coded.

Since the original work of Maddah-Ali and Niesen (2014), there have been several aspects of

coded caching that have been investigated. Reference Maddah-Ali and Niesen (2015) considers the

www.manaraa.com

13

scenario of decentralized caching where the placement phase is driven by the users who randomly

populate their caches with subsets of the files stored at the server. Approaches for updating

the cache content are considered in Pedarsani et al. (2014) and the case of files with different

popularity scores are considered in Niesen and Maddah-Ali (2016) and Ji et al. (2014a); Hachem

et al. (2014a). Security issues in this domain are considered in Sengupta et al. (2015a). The

work of Karamchandani et al. (2014) considers the more general case of hierarchical coded caching,

where certain intermediate nodes in the network are equipped with potentially larger caches and

investigates methods for minimizing the overall traffic in such networks (see also Hachem et al.

(2014b)). Coded caching where each user requests multiple files was investigated in Ji et al.

(2014b). The case of device-to-device (D2D) wireless networks where there is no central server

was examined in Ji et al. (2013); Sengupta and Tandon (2015). Systems with files of differing sizes

were examined in Zhang et al. (2015). The work of Tang and Ramamoorthy (2017, 2016b); Yan

et al. (5064), considers the problem of leveraging the rate gains of coded caching with reduced

subpacketization levels. Synchronization issues and the problem setting where end users have

deadlines was investigated in Niesen and Maddah-Ali (2015); Ghasemi and Ramamoorthy (2017b).

In addition to these contributions, there have been other lines of work that deal with content

caching. In a parallel line of work Shanmugam et al. (2013); Golrezaei et al. (2013); Ji et al. (2013)

consider the problem of femtocaching in a wireless setting where in addition to a central server (or

base station), there are helpers (with caches) interspersed in a cell that help the end users satisfy

their demands. The goal is again to consider caching strategies that minimize the overall rate,

but the solution approaches do not consider the worst case rate over all possible demand patterns;

instead the popularity scores of the different files are explicitly taken into account. Moreover, while

coding is considered, it is conceptually different in the sense that the coding is only restricted to

parts of the same file and coding across different files is not considered. More recently, techniques

inspired by coded caching have been employed for speeding up distributed computing Li et al.

(2016); Lee et al. (2015).

www.manaraa.com

14

2 4 6 8

1

2

3

M

R

Achievable rate by Maddah-Ali and Niesen (2014)

Proposed lower bound

Cutset based lower bound

Figure 2.1: An example of a coded caching system with N = 9 files, K = 3 users. Note that the proposed

lower bound is better than the cutset bound and matches the achievable rate points at multiples of N/K.

There has also been parallel work on establishing lower bounds for the coded caching problem.

In Sengupta et al. (2015b), Han’s inequality Cover and Thomas (2012) was leveraged to obtain an

improved lower bound. A multiplicative gap of eight between their lower bound and the achievable

rate in eq. (2.2) was established. The work of Ajaykrishnan et al. (2015) also presents a lower bound

technique. As discussed in Section 2.5, their technique can be considered as a special case of our

work. The specific case of N = K = 3 was considered in Tian (2015) via a computational approach.

We present a detailed comparison of our technique with these other approaches in Section 2.5.

2.1.2 Summary of our contributions

In this work our main contribution is in developing improved lower bounds on the required

rate for the coded caching problem. We show that the cutset based bound in eq. (2.3) is

significantly loose and propose a larger class of lower bounds that are significantly tighter. Our

specific contributions include the following.

• We demonstrate that the computation of our lower bound can be posed as a combinatorial

labeling problem on a directed tree. Our method generates lower bounds on αR?+βM , where

www.manaraa.com

15

α, β are positive integers. While the cutset bound only optimizes over at most min(N,K)

choices, our technique allows us to consider many more (α, β) pairs1.

• We perform a careful analysis of the underlying combinatorial structure of the problem that

allows us to obtain significantly better lower bounds than those obtained in prior work. For

a given pair (α, β) and number of users K, it is intuitively clear that the lower bound on

αR? + βM will be large if the number of files N is large. We define the notion of a saturated

instance, which are directed trees and corresponding labelings that give the largest possible

lower bound (using our technique) using as few files as possible. An analysis of saturated

instances allows us to always improve on the cutset bound and in most ranges of M , our

bound is strictly better.

• Our machinery allows us to show that the achievable rate of Maddah-Ali and Niesen (2014)

is within a multiplicative factor of four of our proposed lower bound for all values of N and

K. This is possible by analyzing some combinatorial properties of saturated instances.

• Our proposed technique also applies to other variants of coded caching problem. We discuss

the application of our work to the case of D2D wireless networks and coded caching with

multiple requests as well.

As an example, Figure 2.1 illustrates the tightness of the proposed lower bound for a coded

caching system with a server that contains N = 9 files and K = 3 users. Specifically, our proposed

bound demonstrates the optimality of the achievable scheme for values of M that are integer

multiples of N/K in this specific case.

2.2 Lower Bound on R?(M)

In this section we present our proposed lower bound on R?(M). We begin with an example

that demonstrates the core idea of our approach.

1The cutset bound can be considered as a special case of our bound.

www.manaraa.com

16

v1

{Z1}
v2

{X123}
v3

{Z2}
v4

{X312}

u1 u2

u∗

v∗

{W1} {W1}

{W2,W3}

Figure 2.2: Problem instance for Example 2. For clarity of presentation, only the Wnew(u) label has been

shown on the edges.

Example 2 Consider a coded caching system with N = K = 3. Then, the following sequence of

information theoretic inequalities hold.

2R?F + 2MF ≥ H(Z1, X123) +H(Z2, X312)

(a)
= I(W1;Z1, X123) +H(Z1, X123|W1)

+ I(W1;Z2, X312) +H(Z2, X312|W1)

= H(W1)−H(W1|Z1, X123) +H(Z1, X123|W1)

+H(W1)−H(W1|Z2, X312) +H(Z2, X312|W1)

(b)

≥ F (1− ε) + F (1− ε) +H(Z1, Z2, X123, X312|W1)

= 2F (1− ε) + I(W2,W3;Z1, Z2, X123, X312|W1)

+H(Z1, Z2, X123, X312|W1,W2,W3)

(c)

≥ 2F (1− ε) + 2F (1− ε) = 4F (1− ε),

where equality (a) holds by the definition of mutual information. Inequality (b) holds by Fano’s

inequality since the file W1 can be recovered with ε-error from the pairs (Z1, X123) and (Z2, X312)

and by the fact that conditioning reduces entropy. Similarly, inequality (c) holds by Fano’s inequality

since the files W2 and W3 can be recovered with ε-error from (Z1, Z2, X123, X312). This holds for

arbitrary ε > 0 and F large enough. Dividing throughout by F we have the required result.

Thus, the key idea of the above bound is to choose the delivery phase signals in such a manner

so that the various terms that are combined allow the “reuse” of the same file multiple times. For

www.manaraa.com

17

v5

{Z1}
v1

{X124}
v6

{Z2}
v2

{X314}
v7

{Z3}
v3

{X241}
v8

{Z1}
v4

{X143}

u1 u2 u3 u4

u5 u6

u∗

v∗

{W1} {W1} {W1} {W1}

{W2,W3} {W2,W3}

{W4}

(a)

v5

{Z1}
v1

{X121}
v6

{Z2}
v2

{X341}
v7

{Z1}
v3

{X112}
v8

{Z3}
v4

{X314}

u1 u2 u3 u4

u5 u6

u∗

v∗

{W1} {W4} {W1} {W4}

{W2,W3} {W2,W3}

(b)

Figure 2.3: Problem instances discussed in Example 3 where N = 4 and K = 3. The instance (a) has

reused more files than the corresponding cutset bound derived from instance (b).

instance, in step (a) of the above bound, we use the definition of mutual information to rewrite

the terms H(Z1, X123) and H(Z2, X312). Note that both pairs (Z1, X123) and (Z2, X312) allow the

recovery of the same file W1, resulting in a contribution of 2F to the lower bound. On the other

hand, the files W2 and W3 are recovered only once. The overall result is a lower bound of 4F .

Thus, our lower bound works with judiciously chosen labels for the delivery phase signals and

combines them with the cache signals in an appropriate way such that a given file is recovered

a large number of times. It turns out that doing this systematically and tractably requires the

development of several new ideas. For instance, the aforementioned chain of inequalities can be

equivalently represented in terms of a directed tree with appropriate labels on its leaves and edges

as shown in Figure 2.2. In particular, the leaves of the tree are labeled with cache signals Z1 and

Z2 and delivery phase signals X123 and X312. Each internal node of the tree corresponds to the

operation of combining the signals and its outgoing edge is labeled by the newly recovered file(s),

e.g., at node u1, the file W1 is recovered. Likewise at node u∗, the files W2 and W3 are recovered.

The lower bound can be obtained by summing the cardinalities of the edge labels. We note here

that the Appendix in Maddah-Ali and Niesen (2014) considers an application of a similar bound

in the specific case of K = N = 2.

The next example shows another crucial point that is key to our approach. Namely, one can

get the same lower bound by using different number of files. It turns out that using less files to

www.manaraa.com

18

obtain a specific lower bound can in turn be leveraged to improve the overall lower bound on the

rate.

Example 3 Consider a coded caching system with N = 4, K = 3. Suppose that we are interested

in deriving a lower bound of type 4R? + 4M ≥ L. Using the cutset bound in (2.3) for s = 2 we

get 2R? + 2M ≥ 4, which in turn yields 4R? + 4M ≥ 8. The corresponding information theoretical

inequalities to derive such a lower bound can be equivalently presented by the directed tree and

labeled leaves and edges in Figure 2.3 (b) (this is formalized in the Appendix). Note that there are

no files labeled on the last edge (u∗, v∗).

On the other hand, consider the directed tree and the corresponding labels in Figure 2.3 (a).

The crucial difference is that the edge (u∗, v∗) recovers the file W4 in Figure 2.3 (a). Summing the

cardinalities of the labels allows us to obtain the inequality 4R? + 4M ≥ 9 which is strictly better

than the cutset bound. Intuitively, this can be explained as follows. It is not too hard to see that

each subtree of the original directed tree can in turn yield an inequality by itself. For instance,

consider the left subtree rooted at u∗, i.e., the subtree with v1, v2, v5 and v6 as leaves and (u5, u
∗)

as its last edge. This subtree allows us to lower bound 2R∗+ 2M . Summing the cardinalities of the

edges of this subtree yields the value 4; crucially, this subtree only uses three files W1,W2 and W3.

A similar statement holds for the right subtree rooted at u∗. This allows the remaining file W4 to

be recovered on the edge (u∗, v∗).

On the other hand an examination of Figure 2.3 (b) shows that its subtrees also yield the value

4, but use four files W1, . . . ,W4. Thus, we conclude that the subtrees of Figure 2.3 (a) are more

efficient in using files. This allows one more file to be recovered on the last edge (u∗, v∗) and

translates into an overall better lower bound.

The key idea of our improved lower bounding technique is thus, to consider directed trees with

appropriate labels that are efficient in using the number of files. We will formalize these notions

in the subsequent discussion. As we have seen, there are new concepts that are needed in working

with the directed trees with labeled leaves and edges. In what follows, we formally define these

concepts.

www.manaraa.com

19

Definition 2 Directed in-tree. A directed graph T = (V,A), is called a directed in-tree if there

is one designated node called the root such that from any other vertex v ∈ V there is exactly one

directed path from v to the root.

The nodes in a directed in-tree that do not have any incoming edges are referred to as the leaves.

The remaining nodes, excluding the leaves and the root are called internal nodes. Each node in a

directed in-tree has at most one outgoing edge. We have the following definitions for a node v ∈ V .

out(v) = {u ∈ V : (v, u) ∈ A}, (outgoing neighbor) and,

in(v) = {u ∈ V : (u, v) ∈ A} (incoming neighbor set).

in− edge(v) = {e ∈ A : e = (u, v)} (incoming edge set).

In this work, we exclusively work with trees which are such that the in-degree of the root equals 1.

There is a natural topological order in T whereby for nodes u ∈ T and v ∈ T , we say that u � v

if there exists a sequence of edges that can be traversed to reach v from u. This sequence of edges

is denoted path(u, v).

Algorithm 1 Lower Bound Algorithm

Input: T = (V,A) with leaves v1, . . . , v` and {label(vi)}`i=1, such that W(vi) = ∅, i = 1, . . . , `.

Initialization:

1: for i← 1, . . . ` do

2: Wnew(vi) = ∆(vi, vi).

3: x(vi,out(vi)) = Wnew(vi).

4: y(vi,out(vi)) = |Wnew(vi)|.
5: end for

6: while there exists an unlabeled edge do

7: Pick an unlabeled node u ∈ V such that all edges in in− edge(u) are labeled.

8: W(u) = ∪v∈in(u)W(v) ∪Wnew(v).

9: Z(u) = ∪v∈in(u)Z(v).

10: D(u) = ∪v∈in(u)D(v).

11: Wnew(u) = ∆(u, u) \W(u).

12: x(u,out(u)) = Wnew(u).

13: y(u,out(u)) = |Wnew(u)|.
14: end while

Output: L =
∑

e∈A ye.

www.manaraa.com

20

Definition 3 Meeting point of nodes in a directed tree. Consider nodes v1 and v2 in a directed

in-tree T = (V,A). We say that v1 and v2 meet at node u if there exist path(v1, u) and path(v2, u)

in T such that path(v1, u) ∩ path(v2, u) = ∅. As there exists a path from any node in T to the root

node, it follows that the existence of node u is guaranteed.

Let D = ∪d1∈[N],...,dK∈[N]{Xd1,...,dK}.

Definition 4 Labeling of directed in-tree. Each node v ∈ T is assigned a label, denoted label(v),

which is a subset of {W1, . . . ,WN} ∪ {Z1, . . . , ZK} ∪ D. Moreover, we also specify W(v) ⊆

{W1, . . . ,WN}, Z(v) ⊆ {Z1, . . . , ZK} and D(v) ⊆ D so that label(v) = W(v) ∪Z(v) ∪D(v).

In our formulation, the leaf nodes are denoted vi, i = 1, . . . , ` are such that W(vi) = ∅.

Definition 5 Recoverability. We say that a singleton source subset {Wi} is recoverable from the

pair (Zj , Xd1,...,dK) if dj = i. Similarly, for a given set of caches Z ′ ⊆ {Z1, . . . , ZK} and delivery

phase signals D′ ⊆ D, we define Rec(Z ′, D′) ⊆ {W1, . . . ,WN} to be the subset of the sources that

can be recovered from pairs of the form (Zi, XJ) where Zi ∈ Z ′ and J is a multiset of cardinality

K with entries from [N] such that XJ ∈ D′.

We let the entropy of a set of random variables equal the joint entropy of all the random variables

in the set. We also let [x]+ = max(x, 0).

Given a directed tree T with appropriate labels on its leaves we present an algorithm (see

Algorithm 1) that generates an inequality of the form αR? + βM ≥ L(α, β). For nodes u, v ∈ T ,

we define the following.

∆(u, v) = Rec(Z(u),D(v)), and

Wnew(u) = ∆(u, u) \W(u). (2.4)

Algorithm 1 operates as follows. It takes as input a directed in-tree T where each leaf vi, i =

1, . . . , ` has labels Z(vi) and D(vi) (W(vi) is set to ∅). The algorithm determines the files that

are recovered at each vi and labels the corresponding outgoing edge with Wnew(vi) and |Wnew(vi)|.

Following this, the algorithm propagates the labels further down the tree in the following manner.

www.manaraa.com

21

For a given node u whose incoming edges are labeled, we set Z(u) = ∪v∈in(u)Z(v) and D(u) =

∪v∈in(u)D(v), i.e., each of these labels is set to the union of the corresponding labels of the nodes

that belong to the incoming node set of u. Next, it sets W(u) = ∪v∈in(u)W(v) ∪Wnew(v), i.e.,

in addition to the W-labels of the incoming node set, W(u) also contains the new files that are

recovered on the incident edges. Note that at each internal node certain cache signals and delivery

phase signals meet, e.g., Z1 and X123 meet at node u1 in Figure 2.2. The outgoing edge of an internal

node is labeled by the new files that are recovered at the node, e.g., at u1 the signals Z1 and X123

recover the file W1. We call a file new if it has not been recovered upstream of a given node. In

a similar manner at u∗ one can recover all the files W1, . . . ,W3; however only the set {W2,W3} is

labeled on edge (u∗, v∗) as W1 was recovered upstream. This process is continued recursively, i.e.,

we label the outgoing edges with the new files that are recovered at node u, propagate the labels

and continue thereafter. The algorithm continues until it labels the last outgoing edge.

It can be seen that the operation of Algorithm 1 is in one to one correspondence with the new

files recovered in the sequence of inequalities in the lower bound. For example, the outgoing labels

of u1 and u2 in Figure 2.2 correspond to step (a) in the inequalities in Example 2. We formalize this

statement in the Appendix (Lemma 6) where we show that a valid lower bound is always obtained

when applying Algorithm 1. The complexity of this algorithm and the other algorithms used in

this paper are discussed in Appendix A.0.5.

Definition 6 Problem Instance. Consider a given tree T with leaves vi, i = 1, . . . , ` that are labeled

as discussed above. Let α =
∑`

i=1 |D(vi)| and β =
∑`

i=1 |Z(vi)|. Suppose that the lower bound

computed by Algorithm 1 equals L. We define the associated problem instance as P (T , α, β, L,N,K).

We also define α̂ = | ∪`i=1 D(vi)| and β̂ = | ∪`i=1 Z(vi)|. A problem instance P (T , α, β, L,N,K) is

said to be optimal if all instances of the form P ′(T ′, α, β, L′, N,K) are such that L′ ≤ L.

It is worth emphasizing that α̂ ≤ α and β̂ ≤ β as some cache and delivery phase signals may be

repeated.

In the subsequent discussion, we focus on understanding the characteristics of optimal problem

instances. Towards this end, we shall often start with a problem instance P and modify it in

www.manaraa.com

22

appropriate ways to arrive at another instance P ′. For ease of presentation, when needed we shall

refer to quantities in instance P (P ′) by using the corresponding superscripts. For example, for a

node u in P (P ′), we will denote the set of new files by WP
new(u) (WP ′

new(u)).

It is not too hard to see that it suffices to consider directed trees whose internal nodes have an

in-degree at least two. In particular, if u has in-degree equal to 1, it is evident that Wnew(u) = ∅

and thus, |Wnew(u)| = 0. In addition, we claim that w.l.o.g. it suffices to consider trees where

internal nodes have in-degree at most two. Therefore, we will assume that all internal nodes have

degree equal to two. More specifically, we can show the following property of problem instances

(the proof appears in the Appendix).

Claim 1 Consider a problem instance P (T , α, β, L,N,K) such that there exists a node u ∈ T with

|in(u)| ≥ 3. Then, there exists another instance P ′(T ′, α, β, L′, N,K) where L′ ≥ L and |in(u)| ≤ 2

for all nodes u ∈ T ′.

Henceforth, we assume that all internal nodes in the problem instances under consideration have

in-degree equal to two. Claim 1 can also be used to conclude that each leaf v in an instance P is

such that either |Z(v)| = 1 or |D(v)| = 1 but not both. Indeed, if there exists a leaf v that violates

this condition, we can use the modification in the proof of Claim 1 to replace v by a directed in-tree

so that the condition is satisfied. If |Z(v)| = 1, we call v a cache node; if |D(v)| = 1 we call it a

delivery phase node. In the subsequent discussion we will assume that the delivery phase nodes are

labeled in an arbitrary order v1, . . . , vα and the cache nodes from vα+1, . . . , vα+β, where we note

that α+ β = `. Moreover, we let D = {v1, . . . , vα} and C = {vα+1, . . . , vα+β}.

In the tree T corresponding to problem instance P (T , α, β, L,N,K), consider an internal node

u and the edge e = (u, v). In the subsequent discussion, we shall use Tu to refer to the subtree that

has its last edge as (u, out(u)), i.e., the subtree that is rooted at out(u). The incoming edges into

u, denoted (ul, u) and (ur, u) are the last edges of the disjoint left and right subtrees denoted Tu(l)

and Tu(r) respectively (see Figure 2.4).

www.manaraa.com

23

Tu(l) Tu(r)

ul ur

u

Figure 2.4: For a given node u ∈ T , its in-neighbors are denoted ul and ur. The corresponding subtrees

are denoted Tu(l) and Tu(r) and are shown enclosed in the dotted boxes.

Each of these subtrees defines a problem instance Pl = P (Tu(l), αl, βl, Ll, N,K) and Pr =

P (Tu(r), αr, βr, Lr, N,K). We denote the set of delivery phase nodes and cache nodes in Tu(r)

by

Du(r) = {v ∈ D : v ∈ Tu(r)} and

Cu(r) = {v ∈ C : v ∈ Tu(r)},

with similar definitions for Du(l) and Cu(l). We also let

Du = Du(l) ∪ Du(r), and

Cu = Cu(l) ∪ Cu(r).

Let Γl = ∪v∈Tu(l)Wnew(v) and Γr = ∪v∈Tu(r)Wnew(v), i.e., Γl and Γr are the subsets of {W1, . . . ,WN}

that are used up in the problem instances Pl and Pr respectively. It can be observed that

Γl = ∆(ul, ul) and Γr = ∆(ur, ur).

We shall often need to reason about the files recovered at the node u from the different subtrees.

For instance, the set of cache nodes in Tu(r) and the delivery phase signals in Tu(l) meet and recover

a subset of the files at u.

www.manaraa.com

24

This set of files corresponds to those recovered from Z(ur) \ Z(ul) and D(ul), and can be

informally thought of as the files recovered when going from right to left. Accordingly, we have the

following definitions.

∆rl(u) = Rec(Z(ur) \Z(ul),D(ul)), and

∆lr(u) = Rec(Z(ul) \Z(ur),D(ur)).

Note that by definition, we have

∆(u, u) = Rec(Z(u),D(u))

= Rec(Z(ul) ∪Z(ur),D(ul) ∪D(ur))

= Rec(Z(ul),D(ul)) ∪Rec(Z(ur),D(ur))

∪Rec(Z(ul),D(ur)) ∪Rec(Z(ur),D(ul))

(a)
= Rec(Z(ul),D(ul)) ∪Rec(Z(ur),D(ur))

∪Rec(Z(ul) \Z(ur),D(ur)) ∪Rec(Z(ur) \Z(ul),D(ul))

= ∆(Z(ul),D(ul))︸ ︷︷ ︸
from Tu(l)

∪∆(Z(ur),D(ur))︸ ︷︷ ︸
from Tu(r)

∪∆lr(u) ∪∆rl(u),

and W(u) = ∆(Z(ul),D(ul)) ∪∆(Z(ur),D(ur)),

where (a) follows since the Rec(Z(ul),D(ur)) potentially contains some files that have already been

recovered in Rec(Z(ur),D(ur)). The other equality holds because of similar reasoning. Therefore,

it follows that

Wnew(u) = ∆(u, u) \W(u)

= ∆rl(u) ∪∆lr(u) \W(u). (2.5)

Note that based on Algorithm 1, we can conclude that

W(u) = ∪v∈{ur,ul}W(v) ∪Wnew(v)

= ∪v�uWnew(v) (by arguing inductively). (2.6)

www.manaraa.com

25

Algorithm 2 Computing ψ

Input: P (T , α, β, L,N,K), Array Ω(u, δu), where u ∈ T , δu ⊆Wnew(u), |δu| = 1.

1: Initialization

2: for all u ∈ T , δu ⊆Wnew(u) where |δu| = 1 do

3: Ω(u, δu)← 0,

4: end for

5: end Initialization

6: for i← 1 to α do

7: for all v′ ∈ C do

8: Let u be the meeting point of vi and v′.

9: δu = ∆(v′, vi).

10: if δu ∈Wnew(u) and Ω(u, δu) == 0 then

11: ψ(vi, v
′)← 1, and Ω(u, δu)← 1.

12: else

13: ψ(vi, v
′)← 0.

14: end if

15: end for

16: end for

For the subsequent discussion, it will be useful to express the value of the lower bound L

for an instance P (T , α, β, L,N,K) in a functional form. In particular, we define the function

ψ : D × C → {0, 1} that allows us to express L in another way. For nodes vi ∈ D, v′ ∈ C we can

define their meeting point u ∈ T . The function ψ(vi, v
′) is determined by means of Algorithm 2,

where the sequence in which we pick the nodes v1, . . . , vα is fixed. Each element of Wnew(u) can

be recovered from multiple pairs of nodes that meet there. The array Ω(u, δu) keeps track of the

first time the file δu is encountered. The function ψ(vi, v
′) takes the value 1 if the file W ∗ recovered

from the pair (Z(v′),D(vi)) at u belongs to Wnew(u) and has not been encountered before and 0

otherwise. A formal description is given in Algorithm 2.

Claim 2 For an instance P (T , α, β, L,N,K) the following equality holds

L =
α∑
i=1

∑
v′∈C

ψ(vi, v
′). (2.7)

Proof: We first note that at the end of Algorithm 2, we have Ω(u, δu) = 1 for all u ∈ T and

all δu ⊆ Wnew(u) such that |δu| = 1. To see this suppose that there is a u1 ∈ T and a singleton

subset δu1 of Wnew(u1) such that Ω(u1, δu1) = 0. Now δu1 is recovered from some delivery phase

www.manaraa.com

26

v5

{Z1}
v1

{X123}
v6

{Z2}
v2

{X314}
v7

{Z3}
v3

{X241}
v8

{Z1}
v4

{X143}

u1 u2 u3 u4

u5 u6

u∗

v∗

{W1} {W1} {W1} {W1}

{W2,W3} {W2,W3}

{W4}

Figure 2.5: Problem instance corresponding to Example 4. There are three users and the server contains

four files.

node and cache node, otherwise it would not be a subset of Wnew(u1). As our algorithm considers

all pairs of delivery phase nodes and cache nodes, at the end of the algorithm it has to be the case

that Ω(u1, δu1) = 1.

Next, we note that for each pair (u1, δu1) where u1 ∈ T and δu1 is singleton subset of Wnew(u1),

we can identify a unique pair of nodes (vi, v
′) where vi ∈ D and v′ ∈ C such that ψ(vi, v

′) and

Ω(u1, δu1) are set to 1 at the same step of the algorithm. The remaining pairs (vi, v
′) that

cannot be put in one to one correspondence with a pair (u1, δu1) are such that ψ(vi, v
′) are

set to 0. Moreover as
∑

u∈T
∑

δu⊆Wnew(u),|δu|=1 Ω(u, δu) =
∑

u∈T |Wnew(u)| = L, it follows that

L =
∑α

i=1

∑
v′∈C ψ(vi, v

′).

We now illustrate the definitions introduced above by means of the following example.

Example 4 The problem instance in Figure 2.5 has seven internal nodes, {u1, . . . , u6, u
∗}. In the

initialization step, Algorithm 2 sets Ω(ui, {W1}) = 0 for 1 ≤ i ≤ 4, Ω(ui, {W2}) = Ω(ui, {W3}) = 0

for i = 5, 6 and Ω(u∗, {W4}) = 0. In the next step, for node v1 it sets ψ(v1, v5) = 1, Ω(u1, {W1}) = 1

(for v5 ∈ C) and ψ(v1, v6) = 1, Ω(u5, {W2}) = 1 (for v6 ∈ C). For v7 ∈ C we have δu∗ = ∆(v7, v1) =

{W3} and since W3 /∈ Wnew(u∗) = {W4} therefore ψ(v1, v7) = 0. By the same argument we have

ψ(v1, v8) = 0. Thus, the contribution of v1 to the lower bound, namely
∑

v′∈C ψ(v1, v
′) = 2. The

complete description of the steps after the initialization, is shown in Table 2.1. The table should be

read in column order from left to right. Within a column, the order of the operations is from top to

bottom. Note that there are two cases, v3 ∈ D, v6 ∈ C and v4 ∈ D, v6 ∈ C where ψ(·, ·) value is set to

www.manaraa.com

27

0 (since the corresponding Ω(·, ·) values are already 1). In both cases δu∗ = {W4} and since W4 is

recovered already, Ω(u∗, {W4}) has already been set to 1 when considering v2 ∈ D, v7 ∈ C. Therefore

ψ(v4, v6) = ψ(v3, v6) = 0. Another point to be noted is that delivery phase node v2 contributes three

files towards L while the other delivery nodes contribute only two files each.

Corollary 1 For an instance P (T , α, β, L,N,K), we have L ≤ αmin(β,K). Moreover, if N ≥

αmin(β,K) there exists an instance such that L = αmin(β,K).

Proof: For a node vi, where 1 ≤ i ≤ α, we have

∑
v′∈C

ψ(vi, v
′) ≤ | ∪v′∈C Z(v′)|

= β̂,

≤ min(β,K). (2.8)

Let u denote the meeting point of v′ and vi. The first inequality above holds since ψ(vi, v
′) = 1

implies that δu = ∆(v′, vi) ⊆Wnew(u) and

∑
v′∈C

ψ(vi, v
′) ≤ | ∪v′∈C Rec(D(vi),Z(v′))|

= |Rec(D(vi),∪v′∈CZ(v′))| ≤ | ∪v′∈C Z(v′)|.

From eq. (2.8) we can conclude that L =
∑α

i=1

∑
v′∈C ψ(vi, v

′) ≤ αmin(β,K). If N ≥

αmin(β,K), it is easy to construct an instance with L = αmin(β,K). We simply pick any directed

tree on α + β leaves. Let the cache node indices be Z1 repeated β − min(β,K) + 1 times and

Z2, Z3, . . . , Zmin(β,K)−1, Zmin(β,K). Suppose that node v ∈ D, v′ ∈ C′ meet at node u. We label the

delivery phase leaves such that | ∪(v,v′)∈D×C′ ∆(v′, v)| = αmin(β,K). This can be done since N is

large enough so that we can choose the labels such that Rec(Z(v′1),D(v1))∩Rec(Z(v′2),D(v2)) = ∅

for v′1, v
′
2 ∈ C′ and v1, v2 ∈ D. For instance, initialize D(v) = X1,1,...,1 for all v ∈ D and then set

D(vi) = Xd1,...,dK , dj = (i − 1) min(β,K) + j for j = 1, . . . ,min(β,K), and i = 1, . . . , α. We

illustrate the construction outlined above by means of the following example.

www.manaraa.com

28

Table 2.1: The steps in Algorithm 2 after initialization when applied to Example 4. The steps flow from

the leftmost to the rightmost column, and in each column from the top to the bottom row.

setting v1 v2 v3 v4

v5

δu1
= W1 δu5

= W3 δu∗ = W2 δu∗ = W1

ψ(v1, v5) = 1 ψ(v2, v5) = 1 ψ(v3, v5) = 0 ψ(v4, v5) = 0
Ω(u1,W1) = 1 Ω(u5,W3) = 1

v6

δu5
= W2 δu2

= W1 δu∗ = W4 δu∗ = W4

ψ(v1, v6) = 1 ψ(v2, v6) = 1 ψ(v3, v6) = 0 ψ(v4, v6) = 0
Ω(u5,W2) = 1 Ω(u2,W1) = 1 Ω(u∗,W4) = 1 Ω(u∗,W4) = 1

v7

δu∗ = W3 δu∗ = W4 δu3
= W1 δu6

= W2

ψ(v1, v7) = 0 ψ(v2, v7) = 1 ψ(v3, v7) = 1 ψ(v4, v7) = 1
Ω(u∗,W4) = 1 Ω(u3,W1) = 1 Ω(u6,W2) = 1

v8

δu∗ = W1 δu∗ = W3 δu6
= W2 δu4

= W3

ψ(v1, v8) = 0 ψ(v2, v8) = 0 ψ(v3, v8) = 1 ψ(v4, v8) = 1
Ω(u6,W2) = 1 Ω(u4,W3) = 1

Example 5 Let α = β = 2, K = 2, and N = 4. We arbitrarily pick a directed tree with v1, v2 as

delivery nodes and v3, v4 as cache nodes. We label Z(v3) = Z1 and Z(v3) = Z2, and delivery nodes

as D(v1) = X1,2 and D(v2) = X3,4. Such a problem instance is illustrated in Figure 2.6 (a). It is

evident that applying Algorithm 1 on this instance yields a lower bound of 4. However, as we will

see later, this instance is not efficient in reusing files.

At this point we have established that for a given problem instance P (T , α, β, L,N,K), we can

always generate an inequality of the form αR?+βM ≥ L. It is natural to therefore consider optimal

problem instances that maximize the lower bound for a given value of α, β,N and K.

Definition 7 For given α, β,N and K, we say that a problem instance P (T ∗, α, β, L∗, N,K) is

optimal if all problem instances P ′(T , α, β, L,N,K)) are such that L∗ ≥ L.

Recall that β̂ = | ∪`i=1 Z(vi)|. For a problem instance P (T , α, β, L,N,K), it may be possible

that β̂ < min(β,K). However, given such an instance, we can convert it into another instance

where β̂ = min(β,K) without reducing the value of L. In fact, the following stronger statement

holds (see Appendix A.0.2 for a proof).

www.manaraa.com

29

Claim 3 For a problem instance P (T , α, β, L,N,K) suppose that there exists an internal node u∗

with associated problem instance P ∗ = P (Tu∗ , α∗, β∗, L∗, N∗,K) such that the following condition

holds.

β̂∗ < min(β∗,K).

Then, there exists another problem instance P ′(T ′, α, β, L′, N,K) where L′ ≥ L such that the above

condition does not hold.

The next claim formalizes the intuitive fact that permuting the cache nodes and the delivery phase

signals by the same permutation does not change the W labels and the lower bound of the instance.

Claim 4 Let P (T , α, β, L,N,K) to be a problem instance and let π : [K] −→ [K] to be a permutation

with inverse σ. Assume that the problem instance P ′(T ′, α, β, L′, N,K) is obtained from P by the

following changes for all v ∈ D and v′ ∈ C.

• Let ZP (v′) = Zi, then set ZP
′
(v′) = Zπ(i).

• Let DP (v) = Xd1,...,dK , then set DP
′
(v) = Xdσ(1),...,dσ(K)

.

Then WP ′
new(u) = WP

new(u), WP ′(u) = WP (u) for u ∈ T , and L′ = L.

Proof: We note that

Rec(Zi, Xd1,...,dK) = Wdi

= Wdσ(π(i)) = Rec(Zπ(i), Xdσ(1),...,dσ(K)
)

for i = 1, . . . ,K. Therefore, for any v ∈ D and v′ ∈ C, we have ∆P ′(v′, v) = ∆P (v′, v) and more

generally ∆P ′(u, u) = ∆P (u, u). Furthermore, WP (u) = ∆P (ul, ul) ∪ ∆P (ur, ur) and we have

WP (u) = WP ′(u) for any u ∈ T . Using eq. (2.4), we have WP ′
new(u) = WP

new(u) for all u ∈ T ′. It

follows that L′ = L.

Henceforth, we will assume w.l.o.g. that β̂ = min(β,K) and that Claim 3 holds. Our next

lemma shows a structural property of problem instances. Namely for an instance where L <

αmin(β,K), increasing the number of files allows us to increase the value of L. This lemma is a

key ingredient in our proof of the main theorem (the proof appears in the Appendix).

www.manaraa.com

30

v3

{Z1}
v1

{X12}

v4

{Z2}

v2

{X34}

v3

{Z1}
v1

{X12}
v4

{Z2}
v2

{X31}

u1

u2

u∗

v∗

u1 u2

u∗

v∗

{W1}
{W2}

{W3,W4}

{W1} {W1}

{W2,W3}

(a) (b)

Figure 2.6: (a) Problem instance P ′(T ′, α, β, L,N ′,K), (b) problem instance P (T , α, β, L,N,K) where

α = 2, β = 2 and K = 2. Both instances reach L = αmin(β,K) = 4 with different number of files N = 3

and N ′ = 4.

Lemma 1 Let P = P (T , α, β, L,K,N) be an instance where L < αmin(β,K). Then, we can

construct a new instance P ′ = P (T ′, α, β, L′,K,N + 1), where L′ = L+ 1.

Informally, another property of optimal problem instances is that the same file is recovered as

many times as possible at the same level of the tree. For instance, in Figure 2.2, W1 is recovered

in both Tu∗(l) and Tu∗(r). In fact, intuitively it is clear that the same set of files can be reused in

any subtrees of an internal node. Our next claim formalizes this intuition. Recall that for a node

u, Γl = ∪v∈Tu(l)Wnew(u) and Γr = ∪v∈Tu(r)Wnew(u).

Claim 5 Consider an instance P = P (T , α, β, L,K,N). For all nodes u ∈ T , suppose w.l.o.g. that

|Γl| ≥ |Γr|. Suppose that there exist a node u ∈ T such that such that Γr * Γl. Then there exists

another instance P ′(T ′, α, β, L′, N ′,K) such that N ′ ≤ N , L′ ≥ L, and Γr ⊆ Γl for all u ∈ T ′.

Next, we upper bound the maximum value of |Wnew(u)| for a node u ∈ T .

Claim 6 In instance P (T , α, β, L,N,K), consider an internal node u. Let ρ(u) = α̂l[min(βr,K −

βl)]
+ + α̂r[min(βl,K − βr)]+. We have

|Wnew(u)| ≤ min
(
ρ(u), [N − |Γl ∪ Γr|]+

)
.

www.manaraa.com

31

Proof: From eq. (2.5) it follows that

|Wnew(u)| ≤ |∆rl(u) \W(u)|+ |∆lr(u) \W(u)|.

Next, we observe that

|∆rl(u) \W(u)| = |Rec(Z(ur) \Z(ul),D(ul)) \W(u)|

≤ |D(ul)| × |Z(ur) \Z(ul)|
(a)

≤ α̂l ×min(β̂r,K − β̂l),
(b)
= α̂l × [min(βr,K − βl)]+,

where inequality (a) holds, since |D(ul)| = α̂l and |Z(ur) \Z(ul)| ≤ min(β̂r,K− β̂l). Inequality (b)

holds under the conditions β̂l = min(βl,K) and β̂r = min(βr,K) (see Claim 10 in Appendix). We

can bound |∆lr(u) \W(u)| in a similar manner.

To conclude the proof we note that instances Pl and Pr recover a total of |Γl ∪ Γr| sources. As

the total number of sources is N , |Wnew(u)| ≤ [N − |Γl ∪ Γr|]+.

Definition 8 Saturation number. Consider an instance P ∗(T ∗, α, β, L∗, N∗,K), where L∗ = αmin(β,K),

such that for all problem instances of the form P (T , α, β, L∗, N,K), we have N∗ ≤ N . We call N∗

the saturation number of instances with parameters (α, β,K) and denote it by Nsat(α, β,K).

In essence, for given α, β and K, saturated instances are most efficient in using the number of

available files. It is easy to see that Nsat(α, β,K) ≤ αmin(β,K) since one can construct an

instance with lower bound αmin(β,K) when αmin(β,K) ≤ N (see Corollary 1).

Example 6 Consider the two problem instances P and P ′ with α = 2, β = 2 and K = 2 that

are shown in Figure 2.6. The lower bound for both instances is L = αmin(β,K) = 4. However,

instance P uses one less file than P ′. This reduction is accomplished by reusing file W1 at both

Tu∗(l) and Tu∗(r). The instance P ′ can be treated as a trivial instance constructed by the procedure

suggested in the proof of Corollary 1 as it uses N ′ = αmin(β,K) = 4 files. It can be verified by

Algorithm 4 in Section 2.2.2 that P is one of the problem instances associated with Nsat(2, 2, 2);

therefore, Nsat(2, 2, 2) = 3.

www.manaraa.com

32

v4

{Z1}
v1

{X123}
v5

{Z2}
v2

{X312}
v6

{Z3}
v3

{X231}

v4

{Z1}
v1

{X123}

v5

{Z2}
v2

{X312}
v6

{Z3}
v3

{X231}

u1 u2 u3

u4

u∗

v∗

u∗

v∗

u1 u2

u∗

v∗

{W1}
{W1} {W1}

{W2,W3}

{W1}

{W1} {W1}

{W2,W3}

P1(T1, 3, 3, 5, N,K) P2(T2, 1, 1, 1, N,K) P3(T3, 2, 2, 4, N,K)

=⇒

Figure 2.7: Problem instances with N = K = 3. Instance P1 is non-atomic as the corresponding lower

bound can be obtained by summing the lower bounds from P2 and P3.

Definition 9 Atomic problem instance. For a given optimal problem instance P (T , α, β, L,N,K)

it is possible that there exist other optimal problem instances Pi(αi, βi, Li, N,K), i = 1, . . . ,m

with m ≥ 2 such that
∑m

i=1 αi = α,
∑m

i=1 βi = β and
∑m

i=1 Li = L, i.e., the value of L follows

from appropriately combining smaller problems. In this case we call the instance P non-atomic.

Conversely, if such smaller problem instances do not exist, we call P an atomic problem instance.

Example 7 Consider the problem instance P1 shown in Figure 2.7 with N = K = 3. The lower

bound associated with this instance, 3R? + 3M ≥ 5, can be obtained by combining the lower bounds

acquired by P2 and P3. Specifically, instance P2 yields R? + M ≥ 1 and instance P3 yields 2R? +

2M ≥ 4. Note that in P1 the last edge (u∗, v∗) is such that Wnew(u∗) = ∅. Thus, the tree can be

split into two separate instances at u∗. Thus it is non-atomic.

It is evident that instances where no new file is recovered in the last edge are non-atomic.

However, we emphasize that there are other instances that are non-atomic as well. For example,

consider instance P ′1, obtained from P1 where we change the label D(v3) to X221. In P ′1, the labels

of edges (u4, u
∗) and (u∗, v∗) will change to {W2} and {W3} respectively; none of the other labels

will change. Even though Wnew(u∗) is nonempty in P ′1, but we still call it non-atomic since the

associated lower bound does not change.

The following theorem and its corollary are the main results of our paper and can be used to

identify optimal problem instances.

www.manaraa.com

33

Theorem 1 Suppose that there exists an optimal and atomic problem instance Po(T = (V,A), α, β, Lo, N,K).

Then, there exists an optimal and atomic problem instance P ∗(T ∗ = (V ∗, A∗), α, β, L∗, N,K) where

L∗ = Lo with the following properties. Let us denote the last edge in P ∗ with (u∗, v∗). Let

P ∗l = P (T ∗u∗(l), αl, βl, L
∗
l , |Γl|,K) and P ∗r = P (T ∗u∗(r), αr, βr, L

∗
r , |Γr|,K). Then, we have

L∗l = αl min(βl,K),

L∗r = αr min(βr,K), and

L∗ = min
(
αmin(β,K), L∗l + L∗r + [N −N0]+

)
, (2.9)

where N0 = max(Nsat(αl, βl,K), Nsat(αr, βr,K))2. Furthermore, min(βl, βr) < K.

Proof: Note that we assume that the problem instance Po is atomic. This implies that WPo
new(u∗) 6=

∅ and, consequently, N > |Γl|, |Γr|. Using Claim 3 we can assert that β̂l = min(βl,K) and β̂r =

min(βr,K).

We denote by (u∗, v∗), the last edge in Po. We let Pl = P (Tu∗(l), αl, βl, Ll, |Γl|,K) and Pr =

P (Tu∗(r), αr, βr, Lr, |Γr|,K). It is easy to see that Lo = Ll + Lr + |WPo
new(u∗)|. Suppose that

Ll < αl min(βl,K). We apply the result of Lemma 1, by noting that |Γl| < N , and conclude

that there exists another instance P ∗∗l = P (T ∗∗u∗(l), αl, βl, L
∗
l + 1, |Γl| + 1,K) that can replace Pl,

where the new file is denoted W ∗. We also note that in Po, W
∗ ∈ WPo

new(u∗). Let us denote

the new instance P ′o. We emphasize that the nature of the modification in Lemma 1 is such that

∆P ′o(u∗, u∗) = ∆Po(u∗, u∗). Moreover, we note that WP ′o(u∗) = WPo(u∗) ∪ {W ∗}. Thus,

WP ′o
new(u∗) = ∆P ′o(u∗, u∗) \WP ′o(u∗)

= ∆P ′o(u∗, u∗) \WPo(u∗) ∪ {W ∗}

= WPo
new(u∗) \ {W ∗}.

The problem instance P ′o is also optimal since Ll is increased by one and |WPo
new(u∗)| is decreased

by one, leaving Lo unchanged. Therefore, moving files from WPo
new(u∗) to either Pl or Pr preserves

optimality. In addition, from L′o = Lo and that Po is atomic, P ′o is atomic. Based on this argument,

2As the instance is atomic, we have N > N0.

www.manaraa.com

34

we can immediately conclude that we cannot have Ll < αl min(βl,K) and Lr < αr min(βr,K) as

the file W ∗ can be used to simultaneously modify the instance Pr. Upon this modification, we

can conclude that Lo can be increased by one, which contradicts the optimality of the instance Po.

Thus we assume that Lr = αr min(βr,K). We can repeatedly apply the operation of moving files

from WPo
new(u∗) to Pl until we have L∗l = αl min(βl,K). It has to be the case that |WPo

new(u∗)| >

αl min(βl,K) − |Γl| so that we can repeatedly apply the operation of moving the files, for if this

were not true, the instance Po would not be atomic.

We will denote the instance that we arrive at after completing these modification by P ∗ which

is optimal and atomic. We can also observe at this point that if we have βl ≥ K and βr ≥ K so

that β̂l = β̂r = K, then WP ∗
new(u∗) = ∅ (by Claim 6) which implies that the original instance Po

is not atomic. Thus, either βl or βr or both have to be strictly smaller than K. In the discussion

below we assume w.l.o.g. that βr < K. It is easy to see that

L∗ = L∗l + L∗r + |WP ∗
new(u∗)|.

We define ρ̃(u∗) = αl × [min(βr,K − βl)]+ + αr × [min(βl,K − βr)]+ where ρ̃(u∗) ≥ ρ(u∗) due

to the fact that αl ≥ α̂l and αr ≥ α̂r. Using this and Claim 6, we have that

|WP ∗
new(u∗)| ≤ min

(
ρ̃(u∗), [N −max(|Γ∗l |, |Γ∗r |)]

+) .
For an optimal instance, we claim that the above inequality is met with equality. If L∗ =

αmin(β,K) there is nothing to prove. In this case, |WP ∗
new(u∗)| = αmin(β,K) − L∗l − L∗r = ρ̃(u∗)

(see Claim 11 in Appendix) and the above inequality is met with equality.

Otherwise, we have L∗ < αmin(β,K) which implies ρ̃(u∗) > |WP ∗
new(u∗)| and ρ̃(u∗) > N −

max(|Γ∗l |, |Γ∗r |). From the Claim 5, we can assume that either Γ∗l ⊆ Γ∗r or Γ∗r ⊆ Γ∗l . In P ∗,

Nused = max (|Γ∗l |, |Γ∗r |) + |WP ∗
new(u∗)| files are used so far. Now, if N > Nused, we can use Lemma 1

to conclude that there exists a problem instance P ′′(T ′′, α, β, L′′, N ′′,K) where N ′′ = Nused+1 ≤ N

and L′′ = L∗ + 1. This is a contradiction since we assumed that P ∗ is optimal. Therefore,

N ≤ Nused. In addition, since the number of available files is N thus N ≥ Nused. As a result,

N = Nused = max (|Γ∗l |, |Γ∗r |) + |WP ∗
new(u∗)| and the inequality is met with equality. In both cases,

www.manaraa.com

35

2 4 6

0.5

1

1.5

2

M

R

2 4 6

1

2

3

M

R

(a) Case I: N = 6, K = 2 (b) Case II: N = 6, K = 3

5 10 15

2

4

M

R

20 40 60

5

10

M

R
Achievable rate in Maddah-Ali and Niesen (2014)

Proposed lower bound

Cutset based lower bound

(c) Case III: N = 15, K = 4 (d) Case IV: N = 64, K = 12

Figure 2.8: Comparison of the proposed lower bound and the cutset bound.

we conclude that

|WP ∗
new(u∗)| = min

(
ρ̃(u∗), [N −max(|Γ∗l |, |Γ∗r |)]

+) .
It follows that

L∗ = min
(
αmin(β,K), L∗l + L∗r + [N −max(|Γ∗l |, |Γ∗r |)]

+) .

www.manaraa.com

36

If L∗ = αmin(β,K) the saturated instance associated with Nsat(α, β,K) is an optimal instance.

Otherwise, L∗ < αmin(β,K), and we have

|WP ∗
new(u∗)| = [N −max(|Γ∗l |, |Γ∗r |)]

+ (2.10)

≤ [N −max(Nsat(αl, βl,K), Nsat(αr, βr,K))]+ .

We claim that for P ∗ to be optimal, P ∗l and P ∗r have to be such that

max(|Γ∗l |, |Γ∗r |) = max(Nsat(αl, βl,K), Nsat(αr, βr,K)).

To see this we proceed as follows. Note that by the definition of saturation number, there exist

problem instances P ′l (T ′l , αl, βl, L′l, N ′l ,K) and P ′r(T ′r , αr, βr, L′r, N ′r,K) such that L′l = L∗l , L
′
r = L∗r ,

N ′l = Nsat(αl, βl,K) and N ′r = Nsat(αr, βr,K). W.l.o.g. let assume N ′l ≥ N ′r. By the Claims 3

and 5 problem instances P ′l and P ′r can be modified in such a way that β̂′l = min(βl,K), β̂′r =

min(βr,K) and Γ′l ⊆ Γ′r. Also, by Claim 4 we can set ∪v∈C′lZ(v) = {Z1, . . . , Zβ̂′l
} and ∪v∈C′rZ(v) =

{ZK−β̂′r+1, . . . , ZK}. This ensures that β̂l = min(βl,K), β̂r = min(βr,K), and β̂ = min(β,K) hold

in the defined problem instance. Now, consider the problem instance P ′ = P (T ′, α, β, L′, N,K)

with last edge (u′, v′) where P ′l and P ′r are instances corresponding to u′l and u′r respectively. The

instance P ′ uses N ′l + |WP ′
new(u′)| files. If N − N ′l − |WP ′

new(u′)| ≥ 1, then we are able to apply

Lemma 1 N − N ′l − |WP ′
new(u′)| times and come up with a modified version of P ′ so that either

L′ = αmin(β,K) or N−N ′l−|WP ′
new(u′)| = 0. The first case cannot happen since by assumption P ∗

is optimal and L′ ≤ L∗ < αmin(β,K). Therefore, |WP ′
new(u′)| = N−N ′l and L′ = L∗l +L∗r +N−N ′l .

Finally, as L′ ≤ L∗ and L∗ ≤ L∗l + L∗r +N −N ′l , we conclude that L′ = L∗.

Corollary 2 Suppose that there exists an optimal and atomic problem instance

Po(T = (V,A), α, β, Lo, N,K).

Consider problem instances P ′l (α
′
l, β
′
l, L
′
l, N,K) and P ′r(α

′
r, β
′
r, L
′
r, N,K) such that α′l +α′r = α and

β′l + β′r = β such that N ≥ N ′0 = max(Nsat(α
′
l, β
′
l,K), Nsat(α

′
r, β
′
r,K)). Then we have

Lo ≥ min
(
αmin(β,K), L′l + L′r +N −N ′0)

)
.

www.manaraa.com

37

Proof: The result follows by applying the arguments in the proof of Theorem 1, to the problem

instance where P ∗l and P ∗r are replaced by P ′l and P ′r respectively.

Lemma 2 Consider the class of coded caching systems where K = 3 and N = 3n for n = 1, 2, 3,

For this class, the achievable scheme in Maddah-Ali and Niesen (2014) for M ∈ {0, n, 2n, 3n} is

optimal.

Proof: From the achievable scheme in Maddah-Ali and Niesen (2014) we have R?(0) ≤ 3, R?(n) ≤

1, R?(2n) ≤ 1/3, and R?(3n) ≤ 0. It is easy to see that Nsat(α, 1, 3) = α for any integer α. Then,

the following inequalities hold,

3nR? +M ≥ 3n,

nR? + 3M ≥ 3n, and

2nR? + 2M ≥ 4n.

These inequalities are the result of Corollary 2 for (α, β) = (α′l, β
′
l) = (3n, 1), (α, β) = (α′l, β

′
l) =

(n, 3) and (α, β) = (2n, 2) with (α′l, β
′
l) = (n, 1) respectively. The first two inequalities above can

also be obtained by using the cutset bound while the third one cannot. Now, the second inequality

for M = 0 implies that the achievable rate R?(0) ≤ 3 is optimal. Similarly, the third inequality for

M = n implies that achievable rate R?(n) ≤ 1 is optimal. Finally, the first inequality can be used

to show that achievable rates R?(2n) ≤ 1/3 and R?(3n) ≤ 0 are optimal.

The following example demonstrates the effectiveness of Corollary 2.

Example 8 Consider a system with N = 64, K = 12 and cache size M = 16/3. The cut-

set bound for such a system provides a lower bound R?(M) ≥ 77/27 = 2.852. Now, using the

approach of Theorem 1 for α = 12, β = 8, (αl, βl) = (αr, βr) = (6, 4) yields 12R? + 8M ≥

min(12× 8, 24 + 24 + 64−Nsat(6, 4, 12)). It can be shown that Nsat(6, 4, 12) = 17 (see Algorithm 4

in Section 2.2.2). Therefore, R?(M) ≥ 157/36 = 4.361. This is significantly closer to the achievable

rate of 5.5 (from Maddah-Ali and Niesen (2014)).

Theorem 1 can be leveraged effectively if it can also yield the optimal values of αl, βl and αr, βr.

However, currently we do not have an algorithm for picking them in an optimal manner. Thus,

www.manaraa.com

38

we have to use Corollary 2 with either the exact value of Nsat(α, β,K) or an upper bound on

it. Algorithm 4 in Section 2.2.2 is an algorithm to calculate the value of Nsat(α, β,K). Setting

αl = dα/2e, βl = bβ/2c in Theorem 1 and using the corresponding values of the saturation numbers,

we can obtain the results plotted in Figure 2.8.

2.2.1 An analytic bound on the saturation number

Recall that the saturation number for a given α, β and K is the minimum value of N such

that there exists a problem instance P (T , α, β, L,N,K) with L = αmin(β,K). In particular, this

implies that if we are able to construct a problem instance with N ′ files with a lower bound equal

to αmin(β,K), then, Nsat(α, β,K) ≤ N ′. In Algorithm 3, we create one such problem instance.

The basic idea of Algorithm 3 is as follows. The first part focuses on the construction of the

tree, without labeling the leaves. For a given α and β, we first initialize a tree that just consists of

a single edge (u∗, v∗). Following this, we partition α into two parts αl = dα/2e and αr = α − αl.

On the other hand, β is split into βl = bβ/2c and βr = β − βl. The algorithm, then recursively

constructs the left and right subtrees of u∗. It is important to note that the split in the (α, β) pair

is done in such a manner that each subtree gets the floor and the ceiling of the one of the quantities.

Moreover, the labeling of the cache node leaves is such that for a given node u, |Z(ul) ∩ Z(ur)| is

as small as possible. The underlying reason for such a labeling is to ensure that the condition of

Claim 3 doesn’t hold for any u ∈ T .

Following the construction of the tree, the second phase of the algorithm labels each of the

delivery phase nodes, so that the computed lower bound is L = αβ. In this step we use N = αβ

files (see the procedure discussed in the proof of Corollary 1). In the third and final phase of the

algorithm we modify the instance so that for any node u ∈ T , we have that either Γl ⊆ Γr or

Γr ⊆ Γl; we use Claim 5 to achieve this. In the beginning all recovered files in the constructed

instance are distinct so that Γ(ul)∩Γ(ur) = ∅ for all nodes u. W.l.o.g. assume that |Γ(ur)| ≤ |Γ(ul)|.

An application of Claim 5 will thus cause a significant reduction in the number of files that are

used. The following lemma quantifies this reduction.

www.manaraa.com

39

Lemma 3 For given α, β and K if β ≤ K then,

Nsat(α, β,K) ≤
⌊

2αβ + α+ β

3

⌋
.

Proof: We use Algorithm 3 to generate problem instance P (T , α, β, L, N̂sat,K) so that L = αβ.

By the definition of the saturation number we have Nsat(α, β,K) ≤ N̂sat hence we just need to

show that N̂sat ≤ 2αβ+α+β
3 .

First, we need to show that L = αβ. By line 32 of the algorithm the file W(t−1)β+r is

recoverable in instance P0 by the pair (D(vt),Z(vα+r)) or equivalently ∆(vt, vα+r) = W(t−1)β+r

for 1 ≤ t ≤ α and 1 ≤ r ≤ β. On the other hand, W(v∗) = ∪αt=1 ∪
β
r=1 ∆(vt, vα+r) therefore

W(v∗) = {W1, . . . ,Wαβ}. Recall that W(v∗) = ∪u∈T0Wnew(u) and L0 =
∑

u∈T0 |Wnew(u)| so we

have L0 ≥ |W(v∗)| = αβ. But L0 ≤ αβ, by Corollary 2, therefore L0 = αβ. In phase III of the

Algorithm (Modify Delivery Phase Signals) using Claim 5, we have L ≥ L0 and since L ≤ αβ and

L0 = αβ thus L = αβ.

W.l.o.g we set left incoming node such that Γ(ur) ⊆ Γ(ul). Starting from the root node v∗, we

let the set {u0, u1, . . . , ut} and {w0, . . . , wt−1} to be the left and right incoming nodes respectively

so that ui is topologically higher than uj for i < j, ut = u∗ and u0 to be a leaf. This is depicted in

Figure 2.9. Recall that Γ(u) = Wnew(u)∪ Γ(ul)∪ Γ(ur) and Wnew(u)∩ (Γ(ul) ∪ Γ(ur)) = ∅ for any

u ∈ T . Therefore, recursively we have,

N̂sat = |Γ(v∗)| = |Γ(ut)|,

= |Wnew(ut)|+ |Γ(ut−1)|,

=
t∑
i=1

|Wnew(ui)|, (2.11)

where we used Wnew(u0) = ∅ since u0 is a leaf.

In Algorithm 3, a(u) and b(u) denote the number of delivery phase nodes and the number cache

nodes, respectively in the subtree rooted at u. Note that by definition, we have

L = |Wnew(ut)|+
∑

u∈Tut−1

|Wnew(u)|+
∑

u∈Twt−1

|Wnew(u)|.

www.manaraa.com

40

We conclude that
∑

u∈Tut−1
|Wnew(u)| ≤ a(ut−1)b(ut−1) and

∑
u∈Twt−1

|Wnew(u)| ≤ a(wt−1)b(wt−1)

by using Corollary 2. Similarly, using Claim 6, we have that |Wnew(ut)| ≤ a(ut−1)b(wt−1) +

a(wt−1)b(ut−1). In fact, all these inequalities are met with equality. This can be seen as follows.

An application of Claim 5 does not change the lower bound, which implies that L = αβ = a(ut)b(ut).

But, a(ut) = a(ut−1) + a(wt−1) and b(ut) = b(ut−1) + b(wt−1) so that

L = a(ut−1)b(wt−1) + a(wt−1)b(ut−1)

+ a(ut−1)b(ut−1) + a(wt−1)b(wt−1).

An inductive argument can be made to show a similar result for ui, i = 1, . . . , t− 1.

Using these results and the equality in (2.11) yields,

αβ = L,

=
∑
u∈T
|Wnew(u)|,

=
t∑
i=0

|Wnew(ui)|+
t−1∑
i=0

∑
u∈Twi

|Wnew(u)|,

= N̂sat +

t−1∑
i=0

(a(wi)b(wi)) ,

⇒ N̂sat = αβ −
t−1∑
i=0

a(wi)b(wi). (2.12)

Considering our setting for a(u) and b(u) in the line 9 of Algorithm 3 we have

a(ui+1) = a(ui) + a(wi), b(ui+1) = b(ui) + b(wi), (2.13)

for 0 ≤ i ≤ t− 1 and either

(a(ui), b(ui)) = (da(ui+1)/2e, bb(ui+1)/2c) or (a(ui), b(ui)) = (ba(ui+1)/2c, db(ui+1)/2e) .

www.manaraa.com

41

In any case using eq. (2.13) we show in the following that a(ui) ≤ a(wi)+1. By a similar argument

we have b(ui) ≤ b(wi) + 1.

a(ui) ≤ da(ui+1)/2e,

≤ a(ui+1) + 1

2
,

=
a(ui) + a(wi) + 1

2
,

⇒ a(ui) ≤ a(wi) + 1.

Using eq. (2.13) recursively, it is easy to see that α = a(u0)+
∑t−1

i=0 a(wi) and β = b(u0)+
∑t−1

i=0 b(wi).

Therefore, using eq. (2.12) and (2.11),

N̂sat = αβ −
t−1∑
i=0

a(wi)b(wi),

=

t−1∑
i=0

(a(ui)b(wi) + a(wi)b(ui)) ,

≤
t−1∑
i=0

([a(wi) + 1]b(wi) + a(wi)[b(wi) + 1]) ,

≤
t−1∑
i=0

(2a(wi)b(wi) + a(wi) + b(wi)) ,

≤ α+ β + 2
t−1∑
i=0

a(wi)b(wi),

⇒
t−1∑
i=0

a(wi)b(wi) ≥
αβ − α− β

3
.

Finally, using the above inequality and eq. (2.12), we have

Nsat(α, β,K) ≤ N̂sat,

= αβ −
t−1∑
i=0

α(wi)β(wi),

≤ αβ − αβ − α− β
3

=
2αβ + α+ β

3
.

Furthermore as Nsat(α, β,K) is an integer we conclude that

Nsat(α, β,K) ≤
⌊

2αβ + α+ β

3

⌋
.

www.manaraa.com

42

u0 Tw0

u1

ui

Twi−1

ut−1

Twt−2

ut

Twt−1

v∗

Figure 2.9: Saturation path

The aforementioned upper bound on the saturation number is tight. To see this, let consider

β = 1. It is easy to see that Nsat(α, 1,K) = α and using Lemma 3 we have Nsat ≤ bα+ 1/3c = α.

2.2.2 Best lower bound for a fixed M

Theorem 1 and Corollary 2 characterize optimal and near-optimal problem instances for fixed

α and β. In general, the best lower bound on the rate is obtained when we optimize over a range

of choices for α and β. In our approach we restrict β to be less than 2K, i.e., β < 2K. Our next

result shows that an atomic problem instance with β < 2K has α < 2N . As a result, when β < 2K

the range of α, β pairs that we need to consider is limited.

Lemma 4 Any problem instance P (T , α, β, L,N,K) with β < 2K and α ≥ 2N is non-atomic.

Proof: We let (u∗, v∗) to be the last edge in T . If α ≥ 2N then either αl ≥ N or αr ≥ N or both.

W.l.o.g. we assume that αl ≥ N . We note that βl < 2K as β < 2K. Claim 7 below shows that

Nsat(αl, βl,K) ≥ N for βl < 2K. Therefore, N ≤ N0 = max{Nsat(αl, βl,K), Nsat(αr, βr,K)} and

from (2.10) we have |Wnew(u∗)| = 0. This implies that the problem is non-atomic.

Claim 7 Nsat(α, β,K) ≥ α for any β < 2K.

Proof: We use an inductive argument. Clearly, Nsat(1, β
′,K) ≥ 1 for nonzero β′ since at least

one file must be used. Furthermore, by inspection we have Nsat(α
′, 1,K) = α′. Therefore, the base

cases are established. Now, we assume that Nsat(α
′, β′,K) ≥ α′ for all α′ ≤ α and β′ ≤ β < 2K.

We will first show that Nsat(α, β + 1,K) ≥ α. Let P (T , α, β + 1, L,Ns,K) be the problem

instance associated with Nsat(α, β + 1,K) so that Ns = Nsat(α, β + 1,K) and L = αmin(β +

www.manaraa.com

43

1,K). We also let (u∗, v∗) to be the last edge in T and Pl and Pr to be the problem instances

corresponding to Tu∗(l) and Tu∗(r) respectively. By Claim 6, |Wnew(u∗)| ≤ ρ(u∗) = αl[min(βr,K −

βl)]
+ + αr[min(βl,K − βr)]+. We claim that |Wnew(u∗)| = ρ(u∗), Ll = αl min(βl,K), and Lr =

αr min(βr,K) for problem instance P . This follows from the fact that L = |Wnew(u∗)|+Ll +Lr =

αmin(β + 1,K) and the limits on |Wnew(u∗)|, Ll, and Lr discussed in Claim 6 and Corollary

1. The problem instances Pl and Pr are both saturated instances and each uses the minimum

number of files. If this is not the case, replacing them in P with problem instances associated

with Nsat(αl, βl,K) and Nsat(αr, βr,K) will result in a problem instance P ′′(T ′′, α, β, L,N ′′s ,K)

with N ′′s < Ns. But this contradicts our assumption that P is a problem instance associated with

Nsat(α, β + 1,K). Thus we have |Γ(v∗l , v
∗
l)| = Nsat(αl, βl,K) and |Γ(v∗r , v

∗
r)| = Nsat(αr, βr,K).

Then

Nsat(α, β + 1,K) = |Γ(v∗, v∗)|,

= |Wnew(u∗) ∪ Γ(u∗l , u
∗
l) ∪ Γ(u∗r , u

∗
r)|,

= |Wnew(u∗)|+ |Γ(u∗l , u
∗
l) ∪ Γ(u∗r , u

∗
r)|,

≥ |Wnew(u∗)|+ max (Nsat(αl, βl,K), Nsat(αr, βr,K)) ,

= ρ(u∗) + max (Nsat(αl, βl,K), Nsat(αr, βr,K)) . (2.14)

We note that we are guaranteed that either [min(βr,K−βl)]+ ≥ 1 or [min(βl,K−βr)]+ ≥ 1 or

both must hold as β+1 ≤ 2K. Thus, we can assert that ρ(u∗) ≥ min(αl, αr). Now, if we have βl > 0

and βr > 0, then using the induction hypothesis, we have max (Nsat(αl, βl,K), Nsat(αr, βr,K)) ≥

max(αl, αr) so that Nsat(α, β + 1,K) ≥ α. On the other hand if w.l.o.g. βr = 0, we have from eq.

(2.14) that

Nsat(α, β + 1,K)

≥ (α− αl) min(β + 1,K) +Nsat(αl, β + 1,K),

≥ α− αl +Nsat(αl, β + 1,K).

One can argue recursively by considering the left and right branches of the instance associated with

Nsat(αl, β + 1,K) and arrive at the required result.

www.manaraa.com

44

Next, we show that Nsat(α + 1, β,K) ≥ α. In this case, as before let (u∗, v∗) be the last node

of the instance and let Pl and Pr to be the problem instances associated with Tu∗(l) and Tu∗(r)

respectively. Now, if αl > 0 and αr > 0, then the induction hypothesis can be applied to conclude

that max (Nsat(αl, βl,K), Nsat(αr, βr,K)) ≥ max(αl, αr) so that the result holds. On the other

hand, if w.l.o.g. αr = 0, then we have from eq. (2.14) that

Nsat(α+ 1, β,K) ≥ Nsat(α+ 1, βl,K),

where βl < β. One can recursively argue by examining the left and right branches of the instance

associated withNsat(αl+1, βl,K) and arrive at the required result, by using the fact thatNsat(α, 1,K) ≥

α for any α.

The results for Nsat(α, β + 1,K) and Nsat(α+ 1, β,K) can be used to show the corresponding

result for Nsat(α+ 1, β + 1,K) in a similar manner.

Thus far we have shown that the range of α is limited to α < 2N when β is limited to β < 2K.

In fact, β ≥ 2K is a valid choice, though in our experiments it does not appear to yield any better

lower bounds on the rate than the ones we have right now. If these choices of β are useful, they are

likely to yield better lower bounds only in the regime when M is very small. The reason for this

behavior is that for a fixed α the saturation number Nsat(α, β,K) takes maximum value at β = K

and starts decreasing once β > K.

Although Algorithm 3 is used to get an analytical upper bound on the saturation number, the

exact saturation number Nsat(α, β,K) is recursively computable. It is not hard to see that the

inequality in (2.14) is met with equality for a problem instance P (T , α, β, L,Ns,K) associated with

the saturation number Nsat(α, β,K). This is a consequence of the fact that either Γl ⊆ Γr or

Γr ⊆ Γl. For a fixed α, β, and K, there are limited possibilities for 0 ≤ αl ≤ α and 0 ≤ βl ≤ β.

Corresponding to each possible (αl, βl) we can construct a saturated problem instance. This also

includes the problem instance associated with the saturation number Nsat(α, β,K). Therefore, the

following recurrence holds

Nsat(α, β,K) = min
(αl,βl)∈I(α,β)

{
ρ(αl, βl, α, β) + max

(
Nsat(αl, βl,K), Nsat(α− αl, β − βl,K)

)}
,

www.manaraa.com

45

where ρ(αl, βl, α, β) = αl[min(β − βl,K − βl)]+ + (α − αl)[min(βl,K + βl − β)]+ and I(α, β) =

{(a, b) : 0 ≤ a ≤ α, 0 ≤ b ≤ β} \ {(0, 0), (α, β)}. We note that (αl, βl) ∈ {(0, 0), (α, β)} are trivial

and we ignore those cases. Using this recurrence, Algorithm 4 computes the saturation number in

time which is polynomial in the (α, β) pair (see the analysis in Appendix A.0.5).

Thus, the overall process of computing the lower bound on the rate for a fixed value of M

proceeds as follows. We consider 1 ≤ α ≤ 2N and 1 ≤ β ≤ 2K − 1. For each (α, β) in this range,

we consider all possible (αl, βl) and (αr, βr) pairs and compute the lower bound on αR? + βM .

This procedure requires us to precompute Nsat(a, b,K) for 1 ≤ a ≤ 2N and 1 ≤ b ≤ 2K. The

precomputation step has time-complexity O(N2K2) (see Appendix A.0.5). After this step, we

start computing the lower bounds over all possible (α, β) pairs. For each value of (α, β), and for a

specific (αl, βl) and (αr, βr) such that αl + αr = α and βl + βr = β, the complexity of computing

the lower bound is O(1) since we can use the characterization of Theorem 1 and the saturation

numbers are precomputed. Thus, for a value of (α, β), the complexity of computing the bound is

O(αβ) ≤ O(NK). As, we consider a total of NK values of (α, β) in total, the time-complexity of

our procedure is O(N2K2).

2.3 Multiplicative Gap Between Upper and Lower Bounds

We now show that for any set of problem parameters, our proposed lower bound and the

achievable rate of Maddah-Ali and Niesen (2014) in eq. (2.2) are within a factor of four, i.e., we

show the following result.

Theorem 2 Consider a coded caching system with N files and K users each with a normalized

cache size M . Then,

γ(M) =
Rc(M)

R?(M)
≤ 4,

for 0 ≤M ≤ N .

The key idea in proving this result is to exploit the analytical upper bound on the saturation

number Nsat(α, β,K) proposed in Section 2.2.1. For a given N and K, we consider three distinct

www.manaraa.com

46

regions of M . For each range, an appropriate (α, β) pair allows us to obtain a lower bound on the

rate that is within a factor of four of the achievable rate.

Proof:

We use Corollary 2 with the 2α and 2β, so that P ′l and P ′r have parameters α and β. This gives

us the following lower bound.

2αR?(M) + 2βM ≥ min
(
2αmin(2β,K), 2αβ + [N −N0]+

)
,

Moreover, we restrict 2β ≤ K so that,

2αR?(M) + 2βM ≥ min
(
4αβ, 2αβ + [N −N0]+

)
=⇒ R?(M) ≥ min

(
2β, β +

[N −N0]+

2α

)
− β

α
M. (2.15)

Our first observation is that for min(N,K) ≤ 4, the bound is easily seen to be true. Towards

this end, by setting α = N, β = 1 in (2.15), we obtain

R?(M) ≥ 1− M

N
.

where we used Nsat(N, 1,K) = N . Furthermore, from eq. (2.2),

Rc(M) ≤ min(N,K) (1−M/N) ,

This means that γ(M) = min(N,K) ≤ 4 for min(N,K) ≤ 4.

Thus, in the subsequent discussion, we only consider min(N,K) ≥ 5. As in Maddah-Ali and

Niesen (2014), we divide the M -axis to three separated regions. For given M , we explore the space

of (α, β) pairs to obtain an appropriate lower bound that allows us to show the multiplicative gap

of four.

www.manaraa.com

47

2.3.1 Region I: 0 ≤M ≤ max(1, N/K)

First, we consider the range 0 ≤ M ≤ 1. In eq. (2.15) we set α = 1, β = bmin(N,K)/2c. By

such a setting we have 2β ≤ min(N,K) ≤ K and N ≥ Nsat(1, β,K) = β. Therefore for M ≤ 1,

R?(M) ≥ min

(
2β,

N + β

2

)
− βM

(a)

≥ min

(
β,
N − β

2

)
(b)

≥ min

(
min(N,K)− 1

2
,
N −min(N,K)/2

2

)
(c)

≥ min

(
min(N,K)− 1

2
,
min(N,K)

4

)
(d)

≥ min(N,K)

4

≥ min(N,K)(1−M/N)

4

≥ Rc(M)/4.

Here, (a) holds since M ≤ 1, (b) holds since (min(N,K)−1)/2 ≤ β ≤ min(N,K)/2, (c) holds since

N ≥ min(N,K), and (d) holds since min(N,K) ≥ 2.

Next, consider the range M ∈ [1, N/K]. Note that we only need to consider the scenario where

N ≥ K. The achievable rate Rc(M) in this interval is upper bounded by the convex combination

of the rates Rc(0) and Rc(N/K) so that

Rc(M) ≤ λRc(N/K) + (1− λ)Rc(0) = K(1− λ/2)− λ/2, where λ = KM/N.

www.manaraa.com

48

Now, we set α = dN/Ke, β = bK/2c so that αβ ≤ (N/K + 1)K/2 = N/2 + K/2 ≤ N . As,

Nsat(α, β,K) ≤ αβ, this means that N ≥ Nsat(α, β,K). In addition, note that 2β ≤ K. Therefore,

we can use eq. (2.15) to obtain

R?(M) ≥ min

{
2β, β +

N −Nsat(α, β,K)

2α

}
− β

α
M,

(a)

≥ min

{
2β

(
1− M

2α

)
,

2β

3
+
N − 2βM

2α
− β

6α
− 1

6

}
,

(b)

≥ min

{
(K − 1)

(
1− KM

2N

)
,
β

2
+
N − 2βM

4N/K
− 1

6

}
,

≥ min

{
K

2

(
1− λ

2

)
,
β

2
(1− λ) +

K

4
− 1

6

}
,

(c)

≥ min

{
Rc(M)

2
,
K

2

(
1− λ

2

)
− (1− λ)

4
− 1

6

}
,

(d)

≥ min

{
Rc(M)

2
,
Rc(M)

4
+

(K − 3)

4

(
1− λ

2

)
+

1

3

}
,

(e)

≥ Rc(M)/4, (2.16)

where in (a) we used Lemma 3 to bound Nsat(α, β,K), in (b) we used N − 2βM ≥ 0, 1 ≤ α ≤

N/K + 1 ≤ 2N/K, (K − 1)/2 ≤ β, and in (c) we used β ≥ (K − 1)/2, λ = KM/N and the

expression for the upper bound on Rc(M) above. Next, (d) holds because of the achievable rate

bound and (e) holds since min(N,K) ≥ 5. Therefore, γ(M) ≤ 4 for M ∈ [1, N/K] and N ≥ K.

Thus, we conclude that we have γ(M) ≤ 4 for M ∈ [0,max(1, N/K)].

2.3.2 Region II: max(1, N/K) < M ≤ N/2

For M such that max(N/K, 1) < M ≤ N/2 we define t0 = bKM/Nc so that t0N/K < M ≤

(t0 + 1)N/K. Since M ≥ N/K thus t0 ≥ 1. Using eq. (2.2), it turns out that,

Rc(M) ≤ Rc(t0N/K),

=
K

t0 + 1
− t0
t0 + 1

,

≤ K

KM/N
− 1

2
, since t0 + 1 ≥ KM/N and t0 ≥ 1

=
N

M
− 1

2
.

www.manaraa.com

49

Now, consider setting α = b2Mc and β = bN/2Mc. With this setting we have α ≥ 2 (since

M ≥ 1), β ≥ 1 (since M ≤ N/2), and β ≤ N/2M < K/2 (since M > N/K). Furthermore, since

αβ ≤ 2M ×N/2M = N and Nsat(α, β,K) ≤ αβ therefore N ≥ Nsat(α, β,K). This together with

2β ≤ K implies that such a setting allows the usage of (2.15). Therefore, using Lemma 3 to bound

Nsat(α, β,K), we have

R?(M) ≥ min

2β,
2β

3
+
N

2α
− β

6α
− 1

6

− β

α
M.

We claim that 2β ≥ 2β/3 + N/2α − β/6α − 1/6 or equivalently 8αβ + α + β ≥ 3N . This can

be seen as follows. When, N/4 < M ≤ N/2 we have α > N/2, β = 1, so that this holds. On

the other hand when max(1, N/K) < M ≤ N/4, we have α ≥ 2M − 1, β ≥ N/2M − 1, so that

8αβ + α + β ≥ 8N − 7(N/2M + 2M) + 6. It can been seen that N/2M + 2M ≤ N/2 + 2 for

1 ≤ M ≤ N/4 therefore 8αβ + α + β ≥ 9N/2− 8 ≥ 3N for N ≥ 6. For N = 5, the claim trivially

holds since α ≥ 2, β ≥ 1 so that 8αβ + α+ β ≥ 19 ≥ 3×N = 15.

Thus, we have

R?(M) ≥ 2β

3
+
N − 2βM

2α
− β

6α
− 1

6
,

(a)

≥ 7β

12
+
N − 2βM

4M
− 1

6
,

=
N

4M
+
β

12
− 1

6
,

(b)

≥ N

4M
− 1

12
,

≥ N

4M
− 1

8

≥ Rc(M)

4
,

where in (a) we used N − 2βM ≥ 0, α ≥ 2 and α ≤ 2M and in (b) we used β ≥ 1. Eventually,

γ(M) ≤ 4 for max(N/K, 1) ≤M ≤ N/2.

2.3.3 Region III: N/2 < M ≤ N

Let t0 = bK/2c so that M ≥ t0N/K for M ∈ (N/2, N]. For any M ∈ (N/2, N] the convex

combination of rate Rc(t0N/K) and Rc(N) gives us Rc(M) ≤ λRc(t0N/K) + (1 − λ)Rc(N) =

www.manaraa.com

50

λRc(t0N/K) where M = λt0N/K+(1−λ)N or equivalently λ = (1−M/N)/(1−t0/K). According

to this and eq. (2.2) we observe that,

Rc(M) ≤ λRc(t0N/K),

=
(1−M/N)

(1− t0/K)

(K − t0)

(t0 + 1)
,

=
K(1−M/N)

(1 + t0)
,

(a)

≤ K(1−M/N)

K/2
,

= 2(1−M/N),

where (a) holds since 1 + t0 = 1 + bK/2c ≥ K/2.

Now if we set α = N and β = 1 in (2.15) we obtain

R?(M) ≥ 1−M/N

≥ Rc(M)

2
.

This implies that γ(M) ≤ 2 ≤ 4 for M ∈ [N/2, N] and concludes the proof.

2.4 Lower Bounds on the Other Variants of the Coded Caching Problem

In addition to the original coded caching problem there are many variants of the problem

including coded caching with multiple requests Ji et al. (2014b), decentralized coded caching

Maddah-Ali and Niesen (2015) and caching in device to device wireless networks Ji et al. (2013).

Our proposed strategy applies with minor changes for these problems.

2.4.1 Caching in device to device wireless networks

Wireless device to device (D2D) networks where communication is limited to be single-hop are

studied in Ji et al. (2013). There are K users who are the nodes of the network. Each user has

a cache of size M and N files are stored across the different user caches. Thus, in this setting we

necessarily have KM ≥ N . As in the coded caching problem there are placement and delivery

www.manaraa.com

51

phases. In the placement phase the caches are populated from a server; this phase does not depend

on the user demands. The server then leaves the network. We let Zi represent the cache content of

the i-th user. In the delivery phase each user requests a file and the remaining users are informed

about this request. Based on the requests, each user broadcasts a signal so that all demands can

be satisfied. We denote by X
(i)
d1,...,dK

the signal that is broadcasted in the delivery phase by the i-th

user when the j-th user requests file dj ∈ [N] for 1 ≤ j ≤ K. The delivery signal sent by each user

is a function of its cache content so that H(X
(i)
d1,...,dK

|Zi) = 0. We also denote by Xd1,...,dK the set

of signals sent by all the users, i.e., Xd1,...,dK = {X(1)
d1,...,dK

, . . . , X
(K)
d1,...,dK

}. The rate of the signal

that the i-th user sends in the delivery phase is denoted by Ri,d1,...,dK (M). We are interested in

lower bounding the worst case rate that denoted by R?(M) = K maxi,d1,...,dk Ri,d1,...,dK (M).

The cut-set technique and Han’s inequality have been studied in Ji et al. (2013) and Sengupta

and Tandon (2015) respectively to establish lower bounds on R?(M). The multiplicative gap

established in Ji et al. (2013) depends on M and is not constant, whereas Sengupta and Tandon

(2015) shows a gap of at most 8.

The D2D setting is almost exactly the same as the coded caching setting studied in our work.

Our technique for obtaining lower bounds is applicable here with essentially no change and we can

use Theorem 1 and its corollary. Furthermore, since H(X
(i)
d1,...,dK

|Zi) = 0 we can get lower bounds

that are somewhat tighter. By treating Xd1,...,dK as the delivery signal of the original coded caching

problem, we can apply our lower bound to show that the multiplicative gap between the achievable

rate in Ji et al. (2013) and our proposed lower bounds is at most 4. The proof is quite similar to

that of Theorem 2 and is omitted.

2.4.2 Coded caching with multiple requests

Coded caching with multiple requests is variation of the original problem in which each user

requests l files from the server in the delivery phase. A straightforward achievable scheme in this

setting is to apply the scheme of Maddah-Ali and Niesen (2014) l times. This problem is investigated

in Ji et al. (2014b) where a new achievable scheme is proposed based on multiple groupcast index

www.manaraa.com

52

coding. Furthermore, Ji et al. (2014b) introduces a cut-set type lower bound and shows that their

scheme is within a multiplicative factor of 18 of the lower bound. In contrast, using our approach

we can demonstrate a multiplicative gap of 4 for this problem as well.

In this setting the only difference with respect to the original problem is that from a cache

signal Zi and delivery signal Xd1,...,dK one can recover up to l distinct files. Thus, di is a vector

of size l containing information about the l files requested by i-th user. Therefore, all statements

we presented for the original problem are applicable here, bearing in mind that Rec(Zi, Xd1,...,dK)

can be as large as l. For instance, an extension of eq. (2.8) gives us L ≤ lαmin(β,K). Similarly,

the saturation number Nsat(α, β,K, l) is defined as the minimum N ′ among all problem instances

P (T , α, β, L,N ′,K, l) with L = lαmin(K,β). It is easy to verify thatNsat(α, β,K, l) ≤ lαmin(β,K)

in a similar way. The following claim can be shown (we omit the proof as it is very similar to the

previous discussion).

Claim 8 Consider a coded caching system with a server containing N files and K users. Each

user has a cache of size M and demands l files in the delivery phase. The following lower bound

holds for N ≥ N0 where N0 = Nsat(α, β,K, l),

αR?(M) + βM ≥

min

{
2lαmin(β,K), lαmin(β,K) + (N −N0)/2)

}
.

Similarly, an extension of the Lemma 3 holds so that Nsat(α, β,K, l) ≤ l(2αβ+α+β)/3 for β ≤ K.

Exploiting this upper bound and Claim 8, we are able to show that the multiplicative gap of the

straightforward achievable scheme and our lower bound is at most 4. Let Rlc(M) = lRc(M) where

Rc(M) is defined in eq. (2.2).

Theorem 3 Consider a coded caching system with a server containing N files and K users. Each

user requests l files, and has a cache of size 0 ≤M ≤ N . Then

Rlc(M)

R?(M)
≤ 4.

Proof: We divide the M axis into three regions, 0 ≤M ≤ max(l, N/K), max(l, N/K) ≤M ≤

N/2, and N/2 ≤ M ≤ N . In each region we show Rlc(M)/R?(M) ≤ 4 for any N and K. In the

www.manaraa.com

53

following proof, M = l plays the same role as M = 1 in proof of Theorem 2. Before embarking on

the proof, we note that we only need to analyze the gap for min(N, lK) ≥ 5. Note that the lower

bounds of the original problem are also valid here. Indeed, if each user requests the same file l times

(instead of requesting l distinct files) the problem will be equivalent to the original one. Now, in

(2.15) if we set α = N and β = 1 then we get NR?+M ≥ N , or equivalently R?(M) ≥ (1−M/N),

which is applicable to the multiple request problem. Since Rlc(M) ≤ min(N, lK)(1 − M/N),

therefore Rlc(M)/R?(M) ≤ 4 for min(N, lK) ≤ 4.

2.4.2.1 Region I: 0 ≤M ≤ max(l, N/K)

For 0 ≤ M ≤ max(l, N/K), we first show that the result holds for M ≤ l. Since we separately

analyze the gap for M ≥ N/2 we assume l ≤ N/2 so that M ≤ max(l, N/K) ≤ N/2. We use result

of the Claim 8 with setting α = 1 and β = bmin(N/2l,K/2)c where β ≥ 1 from l ≤ N/2. Following

the exact same steps as in Section 2.3.1 for M ≤ 1, it turns out that R?(M) ≥ min(N, lK)/4 ≥

Rlc(M)/4 for M ≤ l.

Now, we assume that l ≤ M ≤ max(l, N/K) which is nonempty if N/K ≥ l. Therefore, we

only need to analyze the gap for N ≥ lK and l ≤ M ≤ N/K. In this range of M the convex

combination of M = 0 and M = N/K is achievable so that Rlc(M) ≤ λRlc(N/K) + (1 − λ)Rlc(0).

From Rlc(0) = lK and Rlc(N/K) = l(K − 1)/2 we have Rlc(M) ≤ lK(1 − λ/2) − lλ/2 where

λ = KM/N . By setting α = dN/lKe and β = bK/2c, we have αβ ≤ αK/2 ≤ N/2l + K/2 ≤ N/l

(from lK ≤ N) and that Nsat(α, β,K, l) ≤ lαβ ≤ N .

www.manaraa.com

54

This ensures that the setting is valid for using Claim 8. According to Claim 8 for such a setting

we have,

R∗(M) ≥ min

(
2lβ, lβ +

N −Nsat(α, β,K, l)

2α

)
− βM

α
,

(a)

≥ min

(
lK

2

(
1− λ

2

)
,
lK(1− λ/2)

2
− l(1− λ)

4
− l

6

)
,

(b)

≥ min

(
Rc(M)

2
,
lK(1− λ/2)

4
+
l(1− λ/2)

2
− l(5− 3λ)

12

)
,

= min

(
Rc(M)

2
,
lK(1− λ/2)

4
+

l

12

)
,

≥ min

(
Rc(M)

2
,
Rc(M)

4

)
≥ Rc(M)

4
,

where inequality (a) can be obtained by making the same argument as we made in the first five

lines of eq. (2.16) and (b) from K ≥ 2.

2.4.2.2 Region II: max(l, N/K) ≤M ≤ N/2

In the first step, we try to get an upper bound on the achievable rate. Letting t0 = bKM/Nc and

following the argument we made in Section 2.3.2 gives us Rlc(M) ≤ lRc(M) ≤ l (N/M − 1/2) for M

in this range. Next, by setting α = b2M/lc and β = bN/2Mc we have Nsat(α, β,K, l) ≤ lαβ ≤ N

and β ≤ N/2M ≤ K/2 (since M ≥ N/K) which imply that the constraints of the Claim 8 are

satisfied. Therefore,

R? ≥ min

(
2lβ, lβ +

N −Nsat(α, β,K, l)

2α

)
− βM

α
,

(a)

≥ min

(
2lβ

(
1− M

2lα

)
,

7lβ

12
+
N − 2βM

2α
− l

6

)
,

(b)

≥ min

(
2lβ

(
1− M

2M

)
,

7lβ

12
+
N − 2βM

4M/l
− l

6

)
,

(c)

≥ min

(
Nl

4M
,
Nl

4M
− l

12

)
,

≥ Rlc(M)/4,

where in (a) we used upper bound on Nsat(α, β,K, l) and that β/α ≤ β/2 (from α ≥ 2), in (b) we

used N − 2βM ≥ 0, α ≤ 2M/l, and α ≥ 2M/l − 1 ≥ M/l (from M ≤ l). In (c) we used β ≥ K/4

(for K ≥ 2) and β ≥ 1 (from M ≤ N/2).

www.manaraa.com

55

2.4.2.3 Region III: N/2 ≤M ≤ N

Using the same argument we made in Section 2.3.3 the achievable rate is bounded by Rlc(M) ≤

lRc(M) ≤ 2l (1−M/N). According to Claim 8 by setting α = bN/lc and β = 1 one may not

recover all N files since αl ≤ N , but if we increase α to dN/le then all files will be recovered.

Therefore αR?(M) + M ≥ N or equivalently R?(M) ≥ (N −M)/α. From N −M ≥ 0 and that

α ≤ N/l + 1 ≤ 2N/l (since l ≤ N) it turns out that R?(M) ≥ l(1 − M/N)/2 ≥ 4Rlc(M) for

N/2 ≤M ≤ N . This concludes the proof.

2.4.3 Decentralized coded caching

In the original coded caching problem the placement phase is managed by a central server.

However, in many scenarios such coordinated placement phase may be impractical. Instead, a

decentralized placement phase was investigated in Maddah-Ali and Niesen (2015) where the users

cache random subsets of the bits of each file while respecting the cache size constraint. Even

in this setting a multiplicative gap of 12 to the cut-set lower bound was obtained. Note that

the lower bounds established for the centralized coded caching problem are also applicable to the

decentralized case. By similar techniques to those used in proof of Theorem 2 we can establish a

multiplicative gap of 4. The proof is omitted as it is quite similar.

2.5 Comparison with Existing Results

Lower bounds on the coding caching rate have been proposed in independent work as well. In

this section we compare our lower bounds with other approaches.

2.5.1 Comparison with cutset bound

Our first observation is that the cutset bound in Maddah-Ali and Niesen (2014) is a special case

of the bound in eq. (2.9). In particular, suppose that α = bN/sc, β = s for s = 1, . . . ,min(N,K).

In this case, we have αβ ≤ N . Thus, it is easy to construct a problem instance where L = αβ (see

Corollary 1). This also follows from observing that Nsat(α, β,K) ≤ αβ.

www.manaraa.com

56

Our bound allows us to explore a larger range of (α, β) pairs that in turn lead to better lower

bounds on R?. Suppose that for a coded caching system with N files and K users, we first apply

the cutset bound with certain α1 and β1 such that α1β1 < N . This would result in the inequality

α1R
? + β1M ≥ α1β1.

However, our approach can do strictly better. To see this note that α1β1 < N implies that

Nsat(α1, β1,K) < N . Now, using Corollary 2 we can instead attempt to lower bound 2α1R
?+2β1M

and obtain the following inequality.

2α1R
? + 2β1M

≥ min (4α1β1, 2α1β1 +N −Nsat(α1, β1,K))

=⇒ α1R
? + β1M

≥ min (2α1β1, α1β1 + (N −Nsat(α1, β1,K))/2) ,

which is strictly better than the cutset bound since N −Nsat(α1, β1,K) > 0.

Example 9 Consider a system containing a server with four files and three users, N = 4 and

K = 3. The cutset bounds corresponding to the given system are

4R? +M ≥ 4,

2R? + 2M ≥ 4, and

R? + 3M ≥ 3.

A simple calculation shows that if M = 1, the above inequalities, yield the lower bound R? ≥ 1.

Now, consider the second bound, 2R? + 2M ≥ 4 and instead attempt to obtain a lower bound

on 4R? + 4M . In this case it can be verified that Nsat(2, 2, 3) = 3 < N . Using Corollary 2, this

results in the lower bound L∗ ≥ min(4 × 3, 2 × 4 + 4 − Nsat(2, 2, 3)) = 9. Thus we can conclude

R? + M ≥ 2.25 which is better than the cutset bound R? + M ≥ 2. Moreover, this inequality also

yields a better lower bound R? ≥ 1.25.

www.manaraa.com

57

2.5.2 Comparison with lower bound of Sengupta et al. (2015b)

The authors in Sengupta et al. (2015b) use Han’s inequality (Cover and Thomas, 2012, Theorem

17.6.1) to establish the following lower bounds on the coded caching problem.

αR?(M) + βM ≥ N − µ

µ+ β
[N − αβ]+ − [N − αK]+, (2.17)

where µ = min(dN−αβα e,K − β), β ∈ {1, . . . ,K} and α ∈ {1, . . . , dNβ e}. This bound also provides

more flexibility in the choice of α as compared to the cutset bound.

An analytical comparison between our bound and the bound in inequality (2.17) is hard,

especially since a priori in all these bounds, for a given M , it is unclear which particular (α, β) pair

gives the best lower bound. Thus, in the discussion below we attempt to analytically compare the

bounds for given (α, β). We also present a numerical comparison in Section 2.5.5. The following

conclusions can be drawn.

(a) Our bound is superior, when 1/α + 1/β ≤ 0.4, i.e., when the values of α and β are large

enough. Note that the best lower bounds on R?(M) for systems with N and K reasonably

large are obtained for higher values of α and β. Thus, for most parameter ranges our bounds

are better.

(b) The bound in Sengupta et al. (2015b) is better when α = 1 and N ≤ K. This in turn means

that their corresponding lower bound for small values of M is better than ours.

(c) We can demonstrate that our proposed lower bound is within a factor of four of the achievable

rate, whereas Sengupta et al. (2015b) only demonstrates a multiplicative gap of eight.

In the remainder of this discussion we assume that α ≥ 2 and show these claims. Let L∗ denote

the value of our lower bound and let LH denote the lower bound of Sengupta et al. (2015b).

Case 1: αβ > N .

Note that α ≤ dN/βe in inequality (2.17). Furthermore, α ≥ 2 implies that N ≥ β. Thus, we can

conclude that αβ ≤ dN/βeβ ≤ 2N .

www.manaraa.com

58

Now, we use Corollary 2 to compare the bounds. Specifically, set αl = dα/2e, βl = bβ/2c, αr =

bα/2c and βr = dβ/2e. This implies that

max(αlβl, αrβr) ≤
αβ

2
≤ N.

Thus, we obtain L∗ = min (αβ, αlβl + αrβr +N −N0). Note that

N0 = max (Nsat(αl, βl,K), Nsat(αr, βr,K)) ,

≤ max(αlβl, αrβr) ≤ N,

using the arguments made above. Thus,

L∗ = min{αβ, αlβl + αrβr +N −N0}

≥ min{αβ, αlβl + αrβr +N −max (αlβl, αrβr)}

= min{αβ,min (αlβl, αrβr) +N}

> N.

On the other hand note that LH is at most N . Thus, our bound is strictly better.

Case 2(a): αβ ≤ αK ≤ N .

As N ≥ αβ ≥ Nsat(α, β,K) we use (2.15) to obtain

L∗ = min (αmin(K, 2β), αβ + (N −N0)/2) .

The corresponding bound LH is obtained by setting µ = K − β.

LH = αK − (1− β/K)(N − αβ)

= αβ(1 + 1/x− x)− (1− x)N, (where 0 ≤ x = β/K ≤ 1)

≤ αβ(2− x), (since, N ≥ αK = αβ/x).

Thus, we conclude that LH ≤ min(αK,αβ(2 − x)) ≤ αmin(K, 2β). As a result, we only need to

examine whether αβ+ (N −N0)/2 ≥ LH . Now, using the fact that N0 ≤ (2αβ+α+β)/3, we have

www.manaraa.com

59

D(v1) {Z1}
. . .

{Zt} {Zmt−t+1}
. . .

{Zmt} D(vm)

u∗
1

D(vm+1){Zmt+1}
. . .

{Zm(t+1)}
. . .

{Z2mt−t+1}
. . .
{Z2mt} D(v2m)

u∗
2

u∗

v∗

Figure 2.10: Problem instance associated with the lower bounds in Ajaykrishnan et al. (2015)

that L∗ ≥ LH when

2αβ/3 +N/2− (α+ β)/6 ≥ αβ(1 + 1/x− x)− (1− x)N

=⇒ (3/2− x)N − (1/x+ 1/3− x)αβ − (α+ β)/6 ≥ 0. (2.18)

As N ≥ αK = αβ/x, inequality (2.18) certainly holds if

(1/2x+ x− 4/3)αβ − (α+ β)/6 ≥ 0.

It can be verified that 1/2x+x−4/3 ≥
√

2−4/3 ≥ 1/15 for 0 ≤ x ≤ 1, so that the above inequality

will definitely hold if 0.4 ≥ 1/α+ 1/β which is the case for α, β ≥ 5.

Case 2(b): αβ ≤ N < αK.

In this case µ = dN/α− βe, so that

LH ≤ N − (1− αβ/N)(N − αβ)

= αβ(2− x′) (where 0 ≤ x′ = αβ/N ≤ 1)

As in the previous case, we conclude that L∗ ≥ LH if

2αβ/3 +N/2− (α+ β)/6 ≥ αβ(2− x′).

Upon analysis similar to the previous case, we can conclude that our bound is better when 0.4 ≥

1/α+ 1/β.

www.manaraa.com

60

2.5.3 Comparison with lower bound of Ajaykrishnan et al. (2015)

The work of Ajaykrishnan et al. (2015) is closest in spirit to our proposed lower bound. In

particular, we show that their lower bound corresponds to specific problem instance as defined

in our work. We note however that the work of Ajaykrishnan et al. (2015) does not analyze

the multiplicative gaps between the achievable rates and lower bounds. The lower bounds in

Ajaykrishnan et al. (2015) can be rewritten as

2mR? + 2tmM ≥ L0, for t ≤ N, K ≥ 2 (2.19)

2tmR? + 2mM ≥ L0, for t ≤ N, K ≥ 2t,

where L0 = min{4tm2, 2tm2 + N − Ñ0}, Ñ0 = t(m2 − m + 1), m = n − γ and n = d(t +√
t2 + 12t(N − t))/6te. Also, γ = max (0, dn−K/2te) and γ = max (0, dn−K/2e) in the first

and second lower bounds respectively. We present these bounds using our notation so that (α, β) is

equal to (2m, 2tm) and (2tm, 2m) in the first and second lower bounds in (2.19) respectively. Note

however, that in the above bound the only free parameter is t, i.e., m itself is dependent on t. It is

easy to see that β ≤ K therefore, unlike our method, this method cannot be used to obtain lower

bounds when β > K.

The lower bound L0 in eq. (2.19) above is reminiscent of our lower bound if the term Ñ0 is

interpreted as a bound on the saturation number. In fact, for the specific setting of (α, β) = (m,mt),

we can create a problem instance as described below, that is a saturated instance with exactly

t(m2 −m + 1) files, so that we can infer that Nsat(m, tm,K) ≤ t(m2 −m + 1). It turns out that

this upper bound on the saturation number may be slightly stronger than the one we derived in

Lemma 3 for general α and β when t and m are small. The associated problem instance of the

first lower bound in (2.19) is depicted in Figure 2.10. The corresponding instance for the second

lower bound in (2.19) can be derived in a similar manner. In this figure, delivery phase signals

D(v1), . . . ,D(v2m) are same as the delivery phase signals defined in Ajaykrishnan et al. (2015). For

this tree, it can be verified that the instance can be saturated with t(m2 − m + 1) files, so that

Nsat(m, tm,K) ≤ t(m2 −m+ 1).

www.manaraa.com

61

However, an application of Algorithm 3 will result in even better upper bound on the saturation

number as shown in the example below. In particular, Algorithm 3 will generate a different tree

when trying to upper bound the saturation number.

Example 10 We consider a system with N = 64 files and K = 8 users and set t = 2 in eq. (2.19)

so that m = 4 and Ñ0 = 26. Algorithm 4 for such a setting returns Nsat(4, 8, 8) = 22 which is

smaller than Ñ0. On the other hand, it can be noted that in Figure 2.10, node u∗1 is such that it

has m = 4 incoming edges which makes the corresponding lower bound looser (cf. Claim 1).

2.5.4 Comparison with results in Tian (2015)

Reference Tian (2015) presents lower bounds for the specific case ofN = K = 3. The inequalities

are generated via a computational technique that works with the entropic region of the associated

random variables. Some of the bounds presented in Tian (2015) can be obtained via our approach

as well. However, the specific inequalities 3R? + 6M ≥ 8, 18R? + 12M ≥ 29 and 6R? + 3M ≥ 8

cannot be obtained using our approach and strictly improves our region. Note however, that it is

not clear whether these inequalities can be obtained in a computationally tractable manner for the

case of large N and K.

2.5.5 Numerical comparison of the various bounds

We conclude this section, by providing numerical results for two cases: (i) N = 16,K = 30 and

(ii) N = 64,K = 50. In Figure 2.11 the ratio Rc(M)/R?(M) is plotted by lower bounding R?(M)

by different methods. In case I (see Figure 2.11) we have N = 16 and K = 30. Our bound has

the minimum multiplicative gap except in the small range 0 ≤ M ≤ 1. Specifically, as discussed

previously, the bound in Sengupta et al. (2015b) is better than ours when K ≥ N and α = 1 and

0 ≤ M ≤ 1. In case II, where N > K our bound has minimum multiplicative gap for all range of

M .

www.manaraa.com

62

2 4 6 8

1.5

2

2.5

3

M

Rc/R
?

(a) Case I: N = 16, K = 30

10 20 30 40

1.5

2

2.5

3

M

Rc/R
?

proposed multi. gap

cutset multi. gap

multi. gap by Sengupta et al. (2015b)

multi. gap by Ajaykrishnan et al. (2015)

(b) Case II: N = 64, K = 50

Figure 2.11: The plot demonstrates the multiplicative gap between the achievable rate, Rc(M), in Maddah-

Ali and Niesen (2014) and lower bounds R?(M) using different lower bounding techniques. For case II our

lower bound results in the least multiplicative gap. In case I, where N ≤ K, the multiplicative gap obtained

by our proposed lower bound is lower than the others for M ≥ 1. In the range 0 ≤ M ≤ 1, Sengupta et al.

(2015b) provides a slightly better result.

2.6 Conclusions and Future Work

In this work we considered a coded caching system with N files, K users each with a normalized

cache of size M . We demonstrated an improved lower bound on the coded caching rate R?(M). Our

approach proceeds by establishing an equivalence between a sequence of information inequalities

and a combinatorial labeling problem on a directed tree. Specifically, for given positive integers α

and β, we generate an inequality of the form αR? + βM ≥ L. We showed that the best L that can

be obtained using our approach is closely tied to how efficiently a given number of files can be used

by our proposed algorithm. Formalizing this notion, we studied certain structural properties of our

algorithm that allow us to quantify the improvements that our approach affords. In particular, we

show a multiplicative gap of four between our lower bound and the achievable rate. An interesting

feature of our algorithm is that it is applicable for general value of N,K and M and is strictly

better than all prior approaches for most parameter ranges.

www.manaraa.com

63

There are still gaps between the currently known lower bounds and the achievable rate and an

immediate open question is whether this gap can be reduced or closed. It would also be of interest

to better understand coded caching rates for more general network topologies.

www.manaraa.com

64

Algorithm 3 Instance construction for upper bounding Nsat(α, β,K)

Input: α, β and K.
1: Initialization
2: Let (u∗, v∗) be last edge and set Unew = {u∗}.
3: Set Z(u∗) = {Z1, Z2, . . . , Zmin(β,K)} and b(u∗) = β, a(u∗) = α.
4: C = ∅ and D = ∅.
5: end Initialization
6: procedure Tree Construction & Cache nodes labeling
7: while Unew is nonempty do
8: Pick u ∈ Unew, create nodes ul and ur, edges (ul, u) and (ur, u), add them to T0.
9: Set a(ul) = da(u)/2e, b(ul) = bb(u)/2c and a(ur) = a(u)− a(ul), b(ur) = b(u)− b(ul).

10: Set Z(ul) and Z(ur) be subsets of Z(u) of sizes min(b(ul),K) and min(b(ur),K) respectively with
minimum intersection.

11: Remove u from Unew.
12: if a(ul) + b(ul) ≥ 2 then
13: Add ul to Unew.
14: else
15: If b(ul) == 1 add ul to D otherwise to C.
16: end if
17: if a(ur) + b(ur) ≥ 2 then
18: Add ur to Unew.
19: else
20: If b(ur) == 1 add ur to D otherwise to C.
21: end if
22: end while
23: end procedure
24: procedure Delivery nodes labeling
25: Let D = {v1, . . . , vα}.
26: for r = 1, . . . ,min(β,K) do
27: Pick a node v ∈ C with Z(v) = {Zr} and denote it by vr+α.
28: end for
29: Let C \ {vα+1, . . . , vα+min(β,K)} = {vα+min(β,K)+1, . . . , vβ}.
30: for t = 1, . . . , α do
31: for r = 1, . . . ,min(β,K) do
32: dr = (t− 1) min(β,K) + r.
33: end for
34: for r = min(β,K) + 1, . . . ,K do
35: dr = 1.
36: end for
37: Set D(vt) = Xd1,...,dK

38: end for
39: end procedure
40: procedure Modify Delivery phase signals
41: Denote current instance by P0(T0, α, β, L0, N0,K).
42: Modify P0(T0, α, β, L0, N0,K) by Claim 5 to obtain P (T , α, β, L, N̂sat,K).
43: end procedure
Output: N̂sat(α, β,K) = |Γ(v∗)|, P (T , α, β, L, N̂sat,K).

www.manaraa.com

65

Algorithm 4 Computing saturation number Nsat(α, β,K)

Input: α, β and K.
Initialization:

1: For all a ∈ {0, . . . , α} and b ∈ {0, . . . , β} set

Nsat(a, 0,K) = 0, Nsat(0, b,K) = 0,

Nsat(a, 1,K) = a, Nsat(1, b,K) = min(b,K).

Main loop:
2: for a = 2; a ≤ α; a+ + do
3: for b = 2; b ≤ β; b+ + do
4:

Nsat(a, b,K) = min
(ã,b̃)∈I(a,b)

{
ρ(ã, b̃, a, b) + max

(
Nsat(ã, b̃, K), Nsat(a− ã, b− b̃, K)

)}
5: end for
6: end for

Output: Nsat(α, β,K)

www.manaraa.com

66

CHAPTER 3. ASYNCHRONOUS CODED CACHING

Caching is a core component of solving the problem of large scale content delivery over the

Internet. Conventional caching typically relies on placing popular content closer to the end users.

Statistically, popular content is requested more frequently and the cache can be used to serve the

user requests in this case. Contacting the central server that has all the content is not needed. This

serves to reduce the induced network traffic.

In their pioneering work Maddah-Ali and Niesen (2014), Maddah-Ali and Niesen considered the

usage of coding in the caching problem. In this so-called “coded caching” setting, there is a server

containing N files, K users each with a cache that can store up to M files. The users are connected

to the server via an error-free shared link (see Figure 3.1). The system operates in two distinct

phases. In the placement phase the content of the caches is populated by server. This phase does

not depend on the future requests of the users which are assumed to be arbitrary. In the delivery

phase each user makes a request and the server transmits potentially coded signals to satisfy the

requests of the users. The work of Maddah-Ali and Niesen (2014) demonstrated that significant

reductions in the network traffic were possible as compared to conventional caching. Crucially,

these gains continue to hold even if the popularity of the files is not taken into account.

While this is a significant result, the original formulation of the coded caching problem assumes

that the user requests are synchronized, i.e., all file requests from the users arrive at the server at the

same time. Henceforth, we refer to this as the synchronous setting. From a practical perspective,

it is important to consider the asynchronous setting where user requests arrive at different times.

In this case, a simple strategy would be to wait for the last request to arrive and then apply the

scheme of Maddah-Ali and Niesen (2014). Such a strategy will be quite good in terms of the overall

rate of transmission from the server. However, this may be quite bad for an end user’s experience,

www.manaraa.com

67

e.g., the delay experienced by the users will essentially be dominated by the arrival time of the last

request.

In this chapter we formulate and study the coded caching problem when the user requests arrive

at different times. Each user has a specific deadline by which his/her demand needs to be satisfied.

The goal is to schedule transmission of packets so that each user is able to recover the requested

file from the transmitted packets and his/her cache content within the prescribed deadline. We

present algorithms for both the offline and online versions of this problem.

This chapter is organized as follows. In Section 3.1 we discuss the background and related work

and overview our main contributions. The problem formulation appears in Section 3.2. Sections

3.3 and 3.4 discuss our work on the offline and the online versions of the problem, respectively. We

conclude the paper with a discussion of opportunities for future work in Section 3.6.

3.1 Background, Related Work and Summary of Contributions

A coded caching system contains a server with N files, denoted Wn, n = 1, . . . , N , each of

size F subfiles, where a subfile is a basic unit of storage. The system also contains K users each

connected to the server through an error free, broadcast shared link. Each of the users is equipped

with a local cache. The i-th cache is of size MiF subfiles. We denote the cache content of user i

by Zi, where Zi is a function of W1, . . . ,WN . Our formulation supports users with different cache

sizes. A block diagram of a coded caching system is depicted in Figure 3.1.

In this work, we assume that an uncoded placement scheme is being used by the coded caching

system, i.e., user i ∈ [K] caches at most an MiF -sized subset of the total number of subfiles in the

server. It is well recognized that the delivery phase in this case corresponds to an index coding

problem Arbabjolfaei et al. (2018). While the optimal solution for an arbitrary index coding

problem is known to be hard, techniques such as clique cover on the side information graph are

well-recognized to have good performance Arbabjolfaei et al. (2018). In this case each transmitted

equation from the server is such that a certain number of users “benefit” from it simultaneously.

Under this assumption, we formulate and study the asynchronous coded caching problem when the

www.manaraa.com

68

W1

...

WN

Shared link

. . .User 1 User 2 User K-1 User K

Cache Z1 Cache Z2 Cache ZK−1 Cache ZK

Figure 3.1: Block diagram of the coded caching system.

file requests arrive at the server at different times. Each user specifies a deadline by which he/she

expects the request to be satisfied1. We assume that

• the delivery phase proceeds via a clique cover and

• transmitting a single packet over the shared link takes a certain number of time slots.

We study the rate gains of coded caching under this setup, i.e., among the class of strategies that

allow the users to meet their deadlines, we attempt to determine those where the server transmits

the fewest number of packets. Both the offline and the online versions of the problem are studied.

In the offline scenario, we assume that information about all request arrival times and deadlines

are known to the server before transmission, whereas in the online scenario, the arrival times and

deadlines are revealed to the server as time progresses.

3.1.1 Main contributions

• Linear programming (LP) formulation in the offline case. We propose a LP in the offline

scenario that determines a schedule for the equations transmitted from the server. If feasible,

1It is not too hard to see that in the absence of deadlines the server can simply wait for enough user requests to
arrive before starting transmission. Thus, the deadline-free case essentially reduces to the synchronous setting.

www.manaraa.com

69

the schedule is such that each user meets its deadlines and the rate of transmission from the

server is minimized. This allows us to study the effect of asynchronism on the coded caching

rate. We demonstrate that a feasible point of the LP can be interpreted as a coding solution

that can be used by the server.

The computational complexity of solving this LP can be quite high for a large number of users.

Accordingly, we develop a dual decomposition technique where the dual problem decouples

into a set of independent minimum cost network flow problems which can be solved in an

efficient manner Ahuja et al. (1993).

• A novel online algorithm. For the online problem we demonstrate that in general coding

within subfiles of the same file is essential. Interestingly, in the synchronous case this is not

needed. We propose an novel online algorithm that is inspired by recursively solving the

offline LP and interpreting the corresponding output appropriately. Under certain condition,

we also show that the algorithm will result in a solution that satisfies the deadline constraints

with high probability.

For both scenarios we present exhaustive simulation results that corroborate our findings and

demonstrate the superiority of our algorithm with respect to prior work. Overall, our work indicates

that under mild asynchronism, much of the benefits of coded caching can still be leveraged.

3.1.2 Related work

The area of coded caching has seen a flurry of research activity along several dimensions in

recent years. From a theoretical perspective, significant work has attempted to understand the

fundamental rate limits of a coded caching system Ghasemi and Ramamoorthy (2017c); Yu et al.

(2017); Yu et al. (2019). Extensions of the basic model to general networks have been examined

in Tang and Ramamoorthy (2016a); Naderializadeh et al. (2017); Wan et al. (2018). Issues related

to subpacketization (i.e., the number of subfiles F) have been considered in Yan et al. (2017);

Tang and Ramamoorthy (2018); Lampiris and Elia (2018). A high subpacketization level can cause

several issues in practical implementations.

www.manaraa.com

70

Our work builds on our initial contributions in Ghasemi and Ramamoorthy (2017b) and Ghasemi

and Ramamoorthy (2017a). In Ghasemi and Ramamoorthy (2017b,a), we presented a preliminary

version of the offline formulation and the dual decomposition method. The current paper includes a

more compact representation of the associated optimization problems, exhaustive simulation results

and all the proofs. Moreover, the part dealing with online algorithms has not appeared in prior

work.

There are relatively few prior works that have considered asynchronism within the context of

coded caching. To our best knowledge, it was first studied in Niesen and Maddah-Ali (2015). They

considered the decentralized coded caching model Maddah-Ali and Niesen (2015), and considered

a situation where each subfile has a specific deadline. Only the online case was considered and

heuristics for transmission from the server were proposed. The heuristics are found to have good

performance. However, the transmission time for a packet was not considered in their formulation.

Reference Lu et al. (2018) also considers the asynchronous setting; again, they do not consider

the transmission time of a transmitted packet. In that sense, their setting is closer to the work of

Niesen and Maddah-Ali (2015) and can be viewed as a set of rules that the server should follow in

the online case. Lu et al. (2018) (Section III.C) also considers an offline setting for the centralized

placement scheme of Maddah-Ali and Niesen (2014). In contrast, our LP formulation can be viewed

as a bound on the possible performance of any online scheme. Our proposed online algorithm has

significantly better performance than the ones presented in Niesen and Maddah-Ali (2015).

Reference Maddah-Ali and Niesen (2015) (Section V.C) also discusses the issue of asynchronism

within the context of decentralized coded caching, without considering deadlines or packet transmission

times. They advocate a further subpacketization of each subfile (referred to as a segment in Maddah-

Ali and Niesen (2015)). It is important to note that any system will need to commit to a certain

subpacketization scheme before deployment. Given this subpacketization and with user specified

deadlines, the formalism of our work and our algorithms can be used to arrive at schemes that

address asynchronous requests.

www.manaraa.com

71

The work of Jiang et al. (pear) proposes an algorithm for the online scenario under the

assumption of decentralized coded caching for reducing the worst-case load of fronthaul links in

fog radio access networks (F-RANs); this is a different model than ours. Their work does not take

transmission time into account and considers the scenario where each user has the same deadline.

The asynchronous setting has also been considered in Yang et al. (2019) for video delivery

by taking into account an appropriately defined audience retention rate. Their work considers a

probabilistic arrival model and presents a decentralized coded caching scheme for it.

3.2 Problem Formulation and Preliminaries

We assume that time τ ≥ 0 is slotted. Let [n] denote the set {1, . . . , n} and the symbol ⊕

represent the XOR operation. We assume that the server contains N ≥ K files2 denoted by

Wn, n = 1, . . . , N . The subfiles are denoted by Wn,f so that Wn = {Wn,f : f ∈ [F]} and the cache

of user i by Zi ⊆ {Wn,f : n ∈ [N], f ∈ [F]}. Zi contains at most MiF subfiles. In the delivery

phase, user i requests file Wdi , where di ∈ [N], from the server. We let Ω(i) denote the indices of

the subfiles that are not present in the i-th user’s cache, i.e.,

Ω(i) = {f : f ∈ [F], Wdi,f /∈ Zi}.

The equations in the delivery phase are assumed to be of the all-but-one type.

Definition 10 All-but-one equation. Consider an equation E such that

E = ⊕`l=1Wdil ,fl
.

We say that E is of the all-but-one type if for each l ∈ [`], we have Wdil ,fl
/∈ Zil and Wdil ,fl

∈ Zik

for all k ∈ [`] \ {l}.

2We assume that N ≥ K as it corresponds to the worst case rate where each of the K users can request a different
file. Furthermore, it is also the more practical scenario.

www.manaraa.com

72

It is evident that an all-but-one equation transmitted from the server allows each of the users

participating in the equation to recover a missing subfile that they need. The asynchronous coded

caching problem can be formulated as follows.

Inputs.

• User requests. User i requests file Wdi , with di ∈ [N] at time Ti.

• Deadlines. The i-th user needs to be satisfied by time Ti + ∆i, where ∆i is a positive integer.

• Transmission delay. Each subfile needs r time-slots to be transmitted over the shared link, i.e.,

each subfile can be treated as equivalent to r packets, where each packet can be transmitted

in one time slot.

As the problem is symmetric with respect to users, w.l.o.g. we assume that T1 ≤ T2 ≤ . . . ≤ TK .

Let Tmax = maxi(Ti + ∆i). Note that upon sorting the set of arrival times and deadlines, i.e.,

∪Ki=1{Ti, Ti+∆i}, we can divide the interval [T1, Tmax) into at most 2K−1 non-overlapping intervals.

Let the integer β, where 1 ≤ β ≤ 2K − 1 denote the number of intervals. Let Π1, . . . ,Πβ represent

the intervals where Πi appears before Πj if i < j; |Π`| denotes the length of interval Π` . The

intervals are left-closed and right-open. An easy to see but very useful property of the intervals

that we have defined is that for a given i, either [Ti, Ti + ∆i) ∩ Π` = Π` or [Ti, Ti + ∆i) ∩ Π` = ∅.

Figure 3.2 shows an example when K = 3. We define U` = {i ∈ [K] : [Ti, Ti + ∆i) ∩ Π` = Π`},

and D` = {di ∈ [N] : i ∈ U`}. Thus, U` is the set of active users in time interval Π` and D` is the

corresponding set of active file requests.

Outputs.

• Transmissions at each time slot. If the problem is feasible, the schedule specifies which

equations (of the all-but-one type) need to be transmitted at each time. The schedule is

such that each user can recover all its missing subfiles within its deadline. The equations

transmitted at time τ ∈ Π` only depend on D`.

www.manaraa.com

73

Π1 Π2 Π3

W1,3 W1,1 ⊕W2,1 W1,2 W2,2 ⊕W3,1 W3,3

τ
0 1 2 3 4 5

T1 T2 T3

Figure 3.2: Offline solution corresponding to the Example 11. The double-headed arrows show the active

time slots for each user. The transmitted equations are shown above the timeline.

We consider two versions of the above problem, namely offline and online version of the

asynchronous coded caching problem.

• Offline version. In the offline version, we assume that the server is aware of {Ti,∆i, di}Ki=1 at

τ = 0. However, at time τ ∈ Π` the transmitted equation(s) will only depend on D`, i.e., the

server cannot start sending missing subfiles for a given user until its request arrives.

• Online version. In the online version, information about the file requests are revealed to the

server as time progresses. At each time τ , the server only has information about {Ti,∆i, di}

if Ti ≤ τ , i.e., the requests that have arrived by time τ .

We begin by defining some relevant sets; for convenience, a tabulated list of most of the items

needed in the subsequent sections can be found in Table 3.1. Consider a subset of users U ⊆ [K].

For each user i ∈ U we let F{i,U} denote the indices of all missing subfiles of the i-th user that have

been stored in the cache of the other users in U , i.e.,

F{i,U} =

{
f ∈ Ω(i) : Wdi,f ∈ Zj for all j ∈ U \ {i}

}
.

Definition 11 User Group. A subset U ⊆ [K] is said to be a user group if F{i,U} 6= ∅ for all users

i ∈ U so that there is at least one all-but-one type equation associated with U .

We note that for a user group U there are
∏
i∈U |F{i,U}| different all-but-one equations. Recall

that U` is the set of active users in time interval Π` and D` represents their file requests. Let U` be

www.manaraa.com

74

a subset of the power set of U` (i.e. the set of all subsets of U`) such that each element in U` is an

user group (cf. Definition 11). For any U ⊆ [K], let IU be the set of indices of all time intervals

where the users in U are simultaneously active, i.e.,

IU =

{
` : [Ti, Ti + ∆i) ∩Π` = Π`, ∀ i ∈ U

}
.

For each missing subfile W{di,f} (where f ∈ Ω(i)) we let U{i,f} denote the set of user groups

where it can be transmitted, i.e.,

U{i,f} =

{
U ∈ ∪β`=1U` : i ∈ U, f ∈ F{i,U}

}
.

We note here that for a fixed i, there are potentially multiple indices f1, f2, . . . , fl ∈ Ω(i) such that

U ∈ U{i,fj} for j = 1, . . . , l.

Example 11 Consider a system (shown in Figure 3.2) with N = 3 files, W1, W2, and W3 where

each file is divided into three subfiles, so that F = 3. There are K = 3 users with the following

cache content, Z1 = {W2,1,W2,2,W3,3}, Z2 = {W1,1,W2,3,W3,1}, and Z3 = {W2,2,W3,2,W2,1}.

Thus, Mi = 1 for i ∈ [K]. The arrival times are T1 = 0, T2 = 1, T3 = 3, and deadlines are ∆1 = 5,

∆2 = 4, and ∆3 = 2. The i-th user requests file Wi, for i = 1, . . . , 3. Therefore, Ω(1) = {1, 2, 3},

Ω(2) = {1, 2}, and Ω(3) = {1, 3}.

In this system we have F{1,{1,2}} = {1} as W1,1 ∈ Z2, and F{2,{1,2}} = {1, 2} as W2,1,W2,2 ∈ Z1.

Therefore, {1, 2} is an user group and the corresponding all-but-one equations are W1,1⊕W2,1 and

W1,1 ⊕W2,2. However, F{1,{1,3}} = ∅ thus {1, 3} is not an user group.

As U = {1, 2} is an user group, we have U2 = {{1}, {2}, {1, 2}}. The set of time intervals

where user group {1, 2} is active is I{1,2} = {2, 3}. Finally, note that user group U = {2, 3} is a

member of U{2,1} since 2 ∈ U and 1 ∈ F{2,U} = {1, 2}. Similarly, U ∈ U{2,2} as well since 2 ∈ U

and 2 ∈ F{2,U}.

3.3 Offline Asynchronous Coded Caching

In this section, we discuss the offline version of the problem where the server has the knowledge

of the arrival times/deadlines of all the requests at τ = 0. The offline solution of the system

www.manaraa.com

75

in Example 11 is depicted in Figure 3.2 where the transmitted equation in each time slot appears

above the timeline. It can be verified that each user can recover the missing subfiles that they need.

In what follows we argue that the offline setting can be cast as a linear programming problem.

3.3.1 Linear programming formulation

For each time interval Π` with ` = 1, . . . , β and for each U ∈ U` we define variable xU (`) ∈

[0, |Π`|] that represents the portion of time interval Π` that is allocated to an equation that benefits

user group U . The actual equation will be determined shortly. For each missing subfile W{di,f}

and each U ∈ U{i,f} we define variable y{i,f}(U) ∈ [0, r] that represents the portion of the missing

subfile W{di,f} transmitted within some or all of the equations associated with xU (`) for ` ∈ IU .

As pointed out before, for a fixed i, U can be used to transmit different missing subfiles needed

by user i. However, a single equation can only help recover one missing subfile needed by i.

Thus,
∑

`∈IU xU (`) must be shared between the appropriate y{i,f}(U)’s. Accordingly, we need the

following constraint for user i and a user group U which contains i.

∑
f∈F{i,U}

y{i,f}(U) ≤
∑
`∈IU

xU (`).

In addition, at time interval Π` at most |Π`| packets can be transmitted, so that
∑

U⊆U` xU (`) ≤

|Π`|. To ensure that each missing subfile W{di,f} is transmitted in exactly r time slots we have∑
U∈U{i,f} y{i,f}(U) = r.

www.manaraa.com

76

Table 3.1: List of variables used in the description

Variable Description

Ti arrival time of user i

Ti + ∆i deadline of user i

β number of time intervals

Π` time interval `

U` set of the active users in time interval `

Ω(i) set of the indices of missing subfiles of user i

U` set of all subsets of U` that are user groups

IU set of the indices ` ∈ [β] so that U ∈ U`
U{i,f} set of all user groups that Wdi,f can be transmitted within

xU (`) portion of Π` allocated to user group U

y{i,f}(U) portion of Wdi,f transmitted within user group U

F{i,U} set of the indices of f ∈ Ω(i) that can be transmitted within U

The following LP minimizes the overall rate of transmission from the server while respecting all

the deadline constraints of the users.

min

β∑
`=1

∑
U∈U`

xU (`) (3.1)

s.t.
∑
U∈U`

xU (`) ≤ |Π`|, for ` = 1, . . . , β,

∑
f∈F{i,U}

y{i,f}(U) ≤
∑
`∈IU

xU (`), for i ∈ U, U ∈ ∪β`=1U`,

∑
U∈U{i,f}

y{i,f}(U) = r, for f ∈ Ω(i), i ∈ [K],

xU (`), y{i,f}(U) ≥ 0, for ∀i ∈ [K], ` ∈ [β], U ∈ ∪β`=1U`.

Note that Niesen and Maddah-Ali (2015) considers the case when each missing subfile has a

prescribed deadline. Our LP above can be modified in a straightforward manner to incorporate

this aspect.

www.manaraa.com

77

Π1 Π2 Π3

0 1 2 3 4 5

E1 E2 E3 E4

time assigned to user group {1, 2} time assigned to user group {2, 3}
time assigned to y{2,1}({2, 3}) time assigned to y{2,2}({2, 3})
time assigned to y{2,1}({1, 2}) time assigned to y{2,2}({1, 2})
time assigned to y{1,1}({1, 2}) time assigned to y{3,1}({2, 3})

Figure 3.3: Interpretation of feasible point in (3.1) for Example 11. For readability, only equations

corresponding to user groups {1, 2} and {2, 3} are depicted.

3.3.2 Interpretation of feasible point of (3.1) as a coding solution

We start by assigning time intervals to user groups. The time interval Π`, ` ∈ [β], will be

arbitrarily assigned to user groups U ∈ U` so that the time assigned to one user group does

not overlap with another. The constraint
∑

U∈U` xU (`) ≤ |Π`| implies that such an assignment

exists. For each user group U and each i ∈ U , suppose that f1, . . . , fl ∈ F{i,U} are such that

y{i,fj}(U) 6= 0 for j = 1, . . . , l. We assign y{i,fj}(U) part of the total time allocated to user group U ,

i.e.,
∑

`∈IU xU (`), to the missing subfile Wdi,fj for j = 1, . . . , l. The constraint
∑

f∈F{i,U} y{i,f}(U) ≤∑
`∈IU xU (`) ensures that such an assignment always exists, i.e., it is possible to assign y{i,f}(U)’s

(for fixed i) to the available (strictly) positive xU (`)’s, such that there is no overlap between them.

This assignment is not unique in general. However, this is not a problem as any assignment can be

used to determine the equations. This process is repeated for all users i ∈ U .

The equation transmitted on a particular interval is simply the XOR of the subfile indices that

map to that interval. This equation is valid since the missing subfile Wdi,f with f ∈ F{i,U} is in

the cache of all the users in U \ {i}.

Finally, according to the constraint
∑

U∈U{i,f} y{i,f}(U) = r, each missing subfile Wdi,f is

transmitted in its entirety in some equation. The following example serves to illustrate the

arguments above.

www.manaraa.com

78

Example 12 Consider again the system in Example 11. Part of a feasible solution to the LP in

(3.1), corresponding to user groups U = {2, 3} and U ′ = {1, 2}, is presented below.

x{1,2}(2) = 0.5, x{1,2}(3) = 0.5, x{2,3}(3) = 1,

y{1,1}({1, 2}) = 1, y{2,1}({1, 2}) = 0.5, y{2,2}({1, 2}) = 0.5,

y{2,1}({2, 3}) = 0.5, y{2,2}({2, 3}) = 0.5, y{3,1}({2, 3}) = 1.

According to the solution, x{2,3}(3) = 1. Therefore, only one unit of Π3 is assigned to U (though

|Π3| = 2). This is denoted by the light blue color line in Figure 3.3. For user 3 ∈ U , there is only

one missing subfile in F{3,{2,3}}, namely W3,1. As y{3,1}({2, 3}) = 1 it is assigned to x{2,3}(3) in its

entirety. This is depicted by the gray line in Figure 3.3. For user 2 in U we have F{2,{2,3}} = {1, 2}.

The solution specifies y{2,1}({2, 3}) = y{2,2}({2, 3}) = 0.5. Thus, we assign the first half of x{2,3}(3)

to missing subfile W2,1 and the second half to W2,2 (see the dark blue and dotted dark blue lines in

Figure 3.3). Accordingly, the server transmits equations such that the first half of the time interval

assigned to user group U corresponds to the E2 = W2,1 ⊕W3,1 whereas the second half corresponds

to E3 = W2,2 ⊕W3,1. The interpretation of the user group U ′ is similar (see Figure 3.3).

Remark 1 The output of the above LP will typically result in a fractional solution for the variables.

A fractional solution can be interpreted by assuming that each packet that is transmitted over the

shared edge can be subdivided as finely as needed. Thus, in each time slot we could transmit multiple

equations that may serve potentially different subsets of users. This assumption is reasonable if the

underlying subfiles and hence the packets are quite large. In any case the above LP provides a lower

bound on the performance of a solution where integrality constraints are enforced.

Remark 2 We note that for the offline solution, within a given time interval, the user groups

can be assigned in any order according to the xU (`)′s as long as they don’t overlap. Moreover the

assignment of yi,f (U)′s is also arbitrary as long the constraints of the LP are respected. However

for the online case (cf. Section 3.4), ordering does matter since we make a best effort decision on

each individual slot as we have no knowledge of future arrivals.

www.manaraa.com

79

Remark 3 The complexity of our solution does not have any dependence on the arrival times

Ti’s and the deadlines ∆i’s. Our formulation of the LP in terms of the intervals allows us to

circumvent this potential dependence. A straightforward formulation of the above problem would

assign variables for each time slot which would be very expensive.

Nevertheless, the complexity of the solving the LP does grow quite quickly (cubic) in the problem

parameters. Next, we discuss a solution based on dual decomposition.

3.3.3 Dual decomposition based LP solution

As it stands, the LP in (3.1) cannot be interpreted as a network flow. Yet, intuitively one can

view the missing subfiles from each user as flowing through the user groups and getting absorbed

in sinks that correspond to their valid time intervals. However, the flows corresponding to different

users can be shared as the all-but-one equations allow different users to benefit from the same

equation. We note here that a similar sharing of flows also occurs in the problem of minimum

cost multicast with network coding Lun et al. (2006); Ramamoorthy (2011). The LP in (3.1) can

however be modified slightly so that the corresponding dual function is such that it can be evaluated

by solving a set of decoupled minimum cost network flow optimizations.

3.3.3.1 Decoupling procedure

For each user i ∈ U the variable x
(i)
U (`) represents the amount of flow corresponding to user i

outgoing from user group U to time interval Π`. Evidently, this amount can’t be more than xU (`).

Therefore, we have

x
(i)
U (`) ≤ xU (`),

which holds for all i ∈ U and all U ∈ U`, ` ∈ [β]. We define U (i)
` ⊆ U` to be the subset of possible

user groups at time interval Π` that include user i, i.e., i ∈ U for all U ∈ U (i)
` .

www.manaraa.com

80

By the flow interpretation of x
(i)
U (`), we have

∑
f∈F{i,U} y{i,f}(U) =

∑
`∈IU x

(i)
U (`) for all U ∈

∪β`=1U
(i)
` . For i = 1, . . . ,K, let Ci denote the following set of constraints.

∑
f∈F{i,U}

y{i,f}(U) =
∑
`∈IU

x
(i)
U (`), for U ∈ ∪β`=1U

(i)
` ,

∑
U∈U{i,f}

y{i,f}(U) = r, for f ∈ Ω(i),

x
(i)
U (`), y{i,f}(U) ≥ 0, for U ∈ U (i)

` , ` ∈ [β], f ∈ Ω(i).

Then, the original LP can be compactly rewritten as

min

β∑
`=1

∑
U∈U`

xU (`) (3.2)

s.t. x
(i)
U (`) ≤ xU (`) for U ∈ U (i)

` , ` ∈ [β], i ∈ [K],∑
U∈U`

xU (`) ≤ |Π`|, for ` ∈ [β],

C1, C2, . . . , CK .

It is not too hard to see that the LPs in (3.1) and (3.2) are equivalent (see Appendix B.0.1). The

only difference with respect to (3.1) is the introduction of variables x
(i)
U (`) (for appropriate ranges

of i, U and `) such that the second set of inequality constraints in (3.1) are replaced by equality

constraints. Moreover, the original constraints are maintained by setting x
(i)
U (`) ≤ xU (`).

We proceed by considering the dual of the LP in (3.2) with respect to the constraints that

involve the variables xU (`). The Lagrangian L({xU (`), x
(i)
U (`), λ

(i)
U (`)}i∈U,U∈U`,`∈[β], {ζ`}`∈[β]) can

be expressed as

L =

β∑
`=1

∑
U∈U`

xU (`) +

β∑
`=1

∑
U∈U`

∑
i∈U

λ
(i)
U (`)

(
x

(i)
U (`)− xU (`)

)
+

β∑
`=1

ζ`

∑
U∈U`

xU (`)− |Π`|

where λ

(i)
U (`)’s and ζ`’s are nonnegative dual variables. It turns out that minimizing the Lagrangian

for fixed dual variables can be simplified by defining γ
(i)
U (`) = λ

(i)
U (`)/(1 + ζ`) for i ∈ U , U ∈ U`,

and ` ∈ [β]. We define Γ(i) = {γ(i)
U (`), ` ∈ IU , U ∈ U (i)

` }, x = {xU (`), U ∈ U`, ` ∈ [β]}, and

www.manaraa.com

81

x(i) = {x(i)
U (`), ` ∈ IU , U ∈ U (i)

` }. The dual function g(Γ(1), . . . ,Γ(K), {ζ`}`∈[β]) is obtained by

solving for

min
x,x(1),...,x(K)

L s.t. C1, C2, . . . , CK .

It is evident that the dual function g(Γ(1), . . . ,Γ(K), {ζ`}`∈[β]) takes a nontrivial value only if

∑
i∈U

γ
(i)
U (`) = 1, ∀ U ∈ U`, ` ∈ [β].

The evaluation of g(Γ(1), . . . ,Γ(K), {ζ`}`∈[β]) at a fixed set of dual variables Γ(i)’s and ζ`’s can

therefore be written as

min
x(1),...,x(K)

β∑
`=1

∑
U∈U`

∑
i∈U

(1 + ζ`)γ
(i)
U (`)x

(i)
U (`)−

β∑
`=1

ζ`|Π`|

s.t. C1, C2, . . . , CK . (3.3)

We emphasize that (3.3) is still a convex problem and that γ
(i)
U (`), ζ` ≥ 0. Let hi(Γi, {ζ`}`∈[β]),

i ∈ [K] be

hi(Γi, {ζ`}`∈[β]) = min
x(i)

β∑
`=1

∑
U∈U(i)

`

(1 + ζ`)γ
(i)
U (`)x

(i)
U (`),

s.t. Ci. (3.4)

Then, the dual function becomes

g(Γ(1), . . . ,Γ(K),{ζ`}`∈[β]) =
K∑
i=1

hi(Γi, {ζ`}`∈[β])−
β∑
`=1

ζ`|Π`|, (3.5)

if
∑

i∈U γ
(i)
U (`) = 1 for all U ∈ U`, ` ∈ [β]. We present an approach to maximize the dual function

in (3.5) shortly.

The sub-problem in (3.4) for fixed Γi and {ζ`}`∈[β], is a standard minimum-cost flow problem.

The associated flow network corresponding to user i, i ∈ [K], depends on Γi and {ζ`}`∈[β] and we

denote it by Ni(Γi, {ζ`}`∈[β]). It contains a source node s and three intermediate layers followed

by a terminal node t (see Figure 3.4 for an example). The nodes in the first, second, and third

www.manaraa.com

82

layer correspond to missing subfiles in Ω(i), user groups in ∪`∈[β]U
(i)
` , and time intervals {Π` : ` ∈

[β] and i ∈ U`} respectively. The edges in Ni(Γi, {ζ`}`∈[β]) can be expressed as follows. There are

|Ω(i)| edges going from source node s to each of missing subfiles in Ω(i). Also, for each f ∈ F{i,U}

there is an edge going from missing subfile node f to user group node U . Furthermore, there

is an edge going from user group U ∈ ∪`∈[β]U
(i)
` to time interval Π` for each ` ∈ IU . Finally,

corresponding to each time interval in {Π` : ` ∈ [β] and i ∈ U`} there is an edge going from this

time interval to the terminal node t.

In flow network Ni(Γi, {ζ`}`∈[β]), i ∈ [K], a zero cost is assigned to all edges except those

from the user group nodes to the time intervals. The cost of the edge between user group U and

time interval Π` is (1 + ζ`)γ
(i)
U (`). The edge between time interval Π` and the terminal node has

a capacity constraint of |Π`| and the edge between the source node and a missing subfile has a

capacity constraint of r; the other edges have no capacity constraint. The variable x
(i)
U (`) is the

amount of flow carried by the edge from user group U to time interval Π`. The source injects a

flow of value |Ω(i)|r which needs to be absorbed in the terminal.

We emphasize that minimum cost network flow algorithms have been subject of much investigation

Ahuja et al. (1993) within the optimization literature and large scale instances can be solved very

quickly. For our work we leverage Capacity Scaling algorithms within the open-source LEMON

package LEMON ().

3.3.3.2 Maximizing the dual function

The dual function in (3.5) is concave (as it can be expressed as the pointwise infimum of a

family of affine functions of the dual variables Boyd and Vandenberghe (2004)). We exploit the

projected subgradient method to maximize the dual function iteratively. Let x
(i)
U (`, n − 1) for all

i ∈ [K], U ∈ U` denote the optimal point of (3.4) when solved for i ∈ [K] at the n − 1 iteration.

Let {γ(i)
U (`, n− 1), ζ`(n− 1), ∀ U ∈ U (i)

` , ` ∈ [β], i ∈ [K]} denote a dual feasible point of (3.5) at

the (n− 1)-th iteration.

www.manaraa.com

83

s

Missing sub-files

W2,1

W2,2

User Groups

{2}

{1, 2}

{2, 3}

Time Intervals

Π2

Π3

t

Figure 3.4: Min-cost flow network associated with subproblem (3.4) corresponding to the second user,

N2(Γ2, ζ2, ζ3). The constraints and costs are given in the text.

According to the subgradient method for the n-th iteration we first determine the following two

parameters for i ∈ [K]

γ̃
(i)
U (`, n) = γ

(i)
U (`, n− 1) + θnx

(i)
U (`, n)(1 + ζ`(n− 1)),

ζ̃`(n) = ζ`(n− 1) + θn(
∑
U∈U`

∑
i∈U

γ
(i)
U (`, n)x

(i)
U (`, n)− |Π`|),

where θn is the step size. These intermediate variables are projected onto the feasible set and

primal recovery is performed by the method of Sherali and Choi (1996). The details can be found

in the Appendix B.0.2. Numerical results appear in Section 3.5.

3.4 Online Asynchronous Coded Caching

In the online scenario, at time τ only information about the already arrived requests are known

to the server, i.e., it only knows Ti, di and ∆i for i ∈ [K] such that Ti ≤ τ . Ideally, one would

want to design an online algorithm that is guaranteed to be feasible whenever the corresponding

offline version is feasible. However, this appears to be a hard problem. Specifically, routinely used

algorithms such as earliest-deadline-first (EDF) do not have this property (see Appendix B.0.3).

In this section we discuss certain characteristics of the online solution that distinguish it from the

offline solution (Section 3.4.1) and our proposed online algorithm and its properties (Section 3.4.2).

www.manaraa.com

84

W1,3 ⊕W1,2 W1,2 ⊕W2,1 W2,3 ⊕W3,2 W3,1
τ

1 2 3 4 5

T1 T2 T3

Figure 3.5: Online solution corresponding to the Example 13. Note that the server is forced to transmit

W1,2 ⊕W1,3 at τ = 1.

3.4.1 Necessity of coding across missing subfiles of a user

Example 13 Consider a system with N = K = 3 and Mi = 1 with Zi = {Wn,i : n ∈ [N]} for

i ∈ [K]. The arrival times and deadlines of the users are Ti = i, and ∆i = 2 for i ∈ [K] (as shown

in Figure 3.5). We assume that user i is interested in files Wi for i ∈ [K] and that transmitting a

subfile takes a single time slot, i.e., r = 1.

Suppose that there is an adversary that makes decisions on when a particular user request

arrives. We assume that the adversary can see the decisions made by the server. Suppose that the

server does not code across any user’s missing subfiles. At τ = 1, it has the choice to transmit

either W1,2 or W1,3. We emphasize that it has to transmit either of these as the deadline for user 1

is T1 + ∆1 = 3 . If the server transmits W1,3, then the adversary can force the arrival of the third

user with (T3,∆3) = (2, 2) and subsequently the arrival of the second user with (T2,∆2) = (3, 2).

In this case, the server is forced to transmit W1,2 at τ = 2, which implies that user 3 misses its

deadline. In a similar manner, if the server transmits W1,2, the adversary can easily generate an

arrival pattern so that user 2 misses its deadline.

This issue can be circumvented if we transmit a linear combination of both W1,2 and W1,3 in

the first time slot as shown in Fig 3.5. Intuitively, this is the correct strategy since transmitting

W1,3 ⊕ W1,2 allows the server to hedge its bets against the identity of the next request arrival.

This example demonstrates that coding across missing subfiles of user 1 is strictly better than the

alternative. We emphasize that the synchronized model of Maddah-Ali and Niesen (2014) and the

offline scenario do not require this.

www.manaraa.com

85

Accordingly, for the online scenario we treat each missing subfile Wdi,f as an element of a large

enough finite field F. This allows us to consider linear combinations of the missing subfiles over F.

Note that any equation of the form ⊕
i∈U

⊕
f∈F{i,U}

α{i,f}W{di,f},

where the coefficients α{i,f} belong to the field F is also an all-but-one equation from which user i

can recover
⊕

f∈F{i,U} α{i,f}W{di,f}.

3.4.2 Recursive LP based algorithm

The online scenario differs significantly from the offline one. At time τ our only decision is to

transmit an equation in the time slot [τ, τ + 1). In particular, it is possible that a request arrives at

τ + 1 and that can change the situation drastically. It makes intuitive sense to transmit equations

that benefit a large number of users. However, we also need to take into account the deadline

constraints of each user. These requirements need to be balanced.

Our proposed online algorithm leverages the offline LP for enforcing the deadline constraints.

We solve an LP which is similar to (3.1) each time a new user request comes into the system.

This specifies a set of xU (`) and yi,f (U) variables. However, in the offline case, the ordering of the

xU (`)’s within an interval does not matter (cf. Remark 2). In the online case, this is no longer true.

As we have no knowledge of future arrivals, it becomes important to choose the “best” user group

for the time slot in which transmission needs to take place. Furthermore in each time slot, exactly

one equation is transmitted, i.e., for each time slot only one user group is chosen for transmission.

In contrast, in the offline LP, the fractional nature of the solution may require sharing of a time

slot between multiple user groups.

Accordingly, based on the xU (`) variables we first decide a candidate list of feasible user groups

that can be chosen for transmission at each time slot. We calculate a metric for each feasible user

group U depending upon (i) the stringency of the deadlines of the users in U , and (ii) the benefit

of this equation to the participating users. If this metric is above a system-defined threshold, we

transmit an equation corresponding to this user group in the time slot following the user’s request.

www.manaraa.com

86

Following this we update certain variables and the process continues for each time slot thereafter.

When the next user request arrives into the system, the history of the variable assignments is used

to solve a new LP (similar to (3.1)), and the process continues recursively.

Consider a time τ = Tk when the request of the k-th user arrives at the server. We let Usent(τ)

be the set of user groups associated with the previously transmitted equations. We also let zU (τ)

be the total time allocated to equations corresponding to user group U prior to time τ . Thus, if

in time interval [τ, τ + 1) the server transmits an equation that exclusively benefit users in U then

zU (τ + 1) = zU (τ) + 1 otherwise zU (τ + 1) = zU (τ). Time intervals Π1,k, . . . ,Πβk,k are formed by

the set of times in

{Tk} ∪ {Ti + ∆i : i ∈ [k], Ti + ∆i > Tk} .

As in the offline case in (3.1), the sets of active users U`,k, user groups U`,k and I(k)
U are defined

corresponding to these time intervals, e.g., U`,k is the set of active users in Π`,k. Moreover, Vk is a

set of user groups that either already have been transmitted or might be transmitted after τ = Tk.

That is Vk = Usent(τ) ∪ {U`,k : ` ∈ [βk]}. The variables xU (`)’s and y{i,f}(U)’s have the same

interpretation as the offline case. With these variables, the server solves the following LP.

min

βk∑
`=1

∑
U∈U`,k

xU (`) (3.6)

s.t.
∑

U∈U`,k

xU (`) ≤ |Π`,k|, for ` = 1, . . . , βk

∑
f∈F{i,U}

y{i,f}(U) ≤
∑
`∈I(k)U

xU (`) + zU (Tk) for i ∈ U,U ∈ Vk,

∑
U∈U{i,f}

y{i,f}(U) = r, for f ∈ Ω(i), ∀ i ∈ ∪βk`=1U`,k,

xU (`), y{i,f}(U) ≥ 0, for i ∈ [k], ` ∈ [β], U ∈ Vk.

An important feature of time intervals Π1,k, . . . , Πβk,k is that these time intervals end at a

deadline and except the first time interval Π1,k that starts with arrival time Tk, the other time

intervals start with a deadline. Thus, we have U`+1,k ⊂ U`,k, i.e., the set of active users in interval

Π`+1,k is a subset of the active users in interval Π`,k for the range of `.

www.manaraa.com

87

{1} {1} {1, 2} {1, 3} {2, 3} {1, 2, 3} {1, 2, 4} {2, 3, 4}
τ

0 1 2 3 4 5 6 7 8
T1 T2 T3 T4 T5

Figure 3.6: An illustration of arrival times and user groups associated with the already submitted equations

upon time τ = 8 in Example 14. Associated with each user group in each time slot, an equation has been

submitted by the server at the same time slot.

Upon solving the LP in (3.6), the server makes a decision on the equation that will be transmitted

in time slot [Tk, Tk + 1). Towards this end, it creates a list of candidate user groups. Let

{x∗U (`), ∀ U ∈ U`, ` = 1, . . . , βk} be the solution of (3.6) and let X ∗ = {x∗U (`) : x∗U (`) ≥ 1}.

The elements of X ∗ are first ordered based on time intervals. Then, among the elements with the

same time interval, they are ordered based on length of user group. Therefore, for two elements

x∗U (`), x∗U ′(`
′) ∈ X ∗ we say x∗U (`) is before x∗U ′(`

′) if ` < `′, or if ` = `′ and |U | ≥ |U ′|. We let X ∗sorted

denote the sorted version of X ∗ using this procedure. Let vi(τ) be the number of missing packets

(subfiles when r = 1) that have been transmitted for user i until time τ ; this value is tracked in

Algorithm 5.

Next, we compute a metric ηU (τ) for each U ∈ X ∗sorted that measures the overall benefit

of transmitting an equation corresponding to user group U . If a user group U is chosen for

transmission, it may in general benefit different users differently. For instance, if U has been

used for transmission in the past, then the current transmission may be less beneficial to some of

the users or of no benefit. We demonstrate this by means of the following example.

Example 14 Consider a system N = K = 5, Mi = 2 for all users i ∈ [K], and r = 1. The

placement scheme is the same as Maddah-Ali and Niesen (2014) so that each file is divided to

F = 10 subfiles and each user misses 6 subfiles. The cache content and missing subfiles are specified

below.

Z1 = {W{n,f}, n ∈ [5], f = 1, 2, 3, 4}, Ω(1) = {5, 6, 7, 8, 9, 10}

Z2 = {W{n,f}, n ∈ [5], f = 1, 5, 6, 7}, Ω(2) = {2, 3, 4, 8, 9, 10}

Z3 = {W{n,f}, n ∈ [5], f = 2, 5, 8, 9}, Ω(3) = {1, 3, 4, 6, 7, 10}

Z4 = {W{n,f}, n ∈ [5], f = 3, 6, 8, 10}, Ω(4) = {1, 2, 4, 5, 7, 9}

Z5 = {W{n,f}, n ∈ [5], f = 4, 7, 9, 10}, Ω(5) = {1, 2, 3, 5, 6, 8}.

www.manaraa.com

88

We assume that the current time is τ = 8 and that the request of users 1, . . . , 4 have arrived to

the server. More specifically, we have T1 = 0, T2 = 2, T3 = 3, T4 = 6 with deadlines ∆i = 15 for all

users i ∈ [K]. The server has already transmitted eight equations so that

Usent(τ) = {{1}, {1, 2}, {1, 3},

{2, 3}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}}.

At τ = 8 the server solves problem (3.6) with earlier parameters set to z{1}(τ) = 2, zU (τ) = 1

for all user groups U ∈ Usent(τ) \ {{1}}, and zU (τ) = 0 otherwise (see Figure 3.6). Then, solving

(3.6) for k = 5 yields the following xU (`) variables.

x{2,3,5}(1) = 1, x{2,4,5}(1) = 1, x{3,4,5}(1) = 1,

x{3,4}(1) = 1, x{4,5}(1) = 1, x{5} = 2. (3.7)

Suppose that the server uses this solution as follows. It schedules user groups {2, 3, 5}, {2, 4, 5},

and {3, 4, 5} at time slots beginning on τ = 8, τ = 9, and τ = 10 respectively. Before τ = 8, the

third user has benefitted from user groups

{1, 3}, {2, 3}, {1, 2, 3}, and {2, 3, 4}.

The third user can recover missing subfiles W{d3,1} and W{d3,6} from transmitted equations associated

with user groups {1, 2, 3} and {2, 3, 4} respectively. Moreover, it can obtain a linear combination

of subfiles {W{d3,f}, f = 1, 6, 7} and {W{d3,f}, f = 1, 3, 4} from the equations associated with

the user groups {2, 3} and {1, 3} respectively. It is easy to see that subfiles W{d3,1}, W{d3,6}, and

W{d3,7}, along with a linear combination of subfiles {W{d3,f}, f = 3, 4} can be recovered from

these equations. Now, at time slot τ = 8 the server transmits an equation associated with user

group {2, 3, 5}. Clearly, the fifth user benefits from this equation since this user can recover missing

subfile W{d5,5} as F{5,{2,3,5}} = {5}. Similarly, since F{3,{2,3,5}} = {7} the third user can recover

only the missing subfile W{d3,7} from this equation. However this subfile has been recovered from

the earlier equations. Therefore, this equation and user group is not beneficial for the third user.

Similarly, one can show that the second user also benefits nothing from this equation and that this

www.manaraa.com

89

equation is only useful for the fifth user. Therefore, the users in a user group might benefit partially

or not benefit from the transmitted equation associated with the user group.

Thus, we need a measure of how useful a given U is to a user i when U is used for transmission

at a given time slot. This can naturally be described in terms of a related LP that we now

describe. For each element x∗U (`) ∈ X ∗sorted let w{i,U}(τ) denote the maximum number of missing

packets that are recovered by user i if user group U was chosen for transmission at time τ . Let us

assume that the server chooses Û to transmit an equation at the next time slot and let Ũsent(τ) =

Usent(τ) ∪ {Û}. Under this assumption we let z̃U (τ), for U ∈ Ũsent(τ), be such that z̃U (τ) = zU (τ)

for U ∈ Usent(τ) \ {Û} and if Û ∈ Usent(τ) then z̃Û (τ) = zÛ (τ) + 1; otherwise z̃Û (τ) = 1. Consider

the set of all user groups in Ũsent(τ). For each user group U in this set there are z̃U (τ) time slots

available. To compute w{i,Û}(τ), we need to find an assignment of the missing subfiles in Ω(i) to each

of these time slots so that number of the recovered missing subfiles of the i-th user is maximized.

We let ỹ{i,f}(U), for U ∈ Ũsent(τ) with U 3 i, to have the same interpretation as y{i,f}(U) in

(3.1). This is equivalent to finding ỹ{i,f}(U)’s that maximize
∑

U∈Ũsent(τ) U3i
∑

f∈F{i,U} ỹ{i,f}(U)

under the following constraints. Since for each user group U ∈ Ũsent(τ) there are z̃U (τ) time slots

available, therefore we have
∑

f∈F{i,U} ỹ{i,f}(U) ≤ z̃U (τ). Each missing subfile in Ω(i) needs r time

slots but not all of them can be recoverable. Therefore, we have
∑

U∈U{i,f}∩Ũsent(τ) ỹ{i,f}(U) ≤ r.

Thus, w{i,Û}(τ) can be obtained as the objective function of the following LP.

max
∑

U∈Ũsent(τ),U3i

∑
f∈F{i,U}

ỹ{i,f}(U) (3.8)

s.t.
∑

f∈F{i,U}

ỹ{i,f}(U) ≤ z̃U (τ) for U ∈ Ũsent(τ), U 3 i

∑
U∈U{i,f}∩Ũsent(τ)

ỹ{i,f}(U) ≤ r for f ∈ Ω(i),

ỹ{i,f}(U) ≥ 0.

www.manaraa.com

90

s

Subfiles in Ω(i)

Wdi,f1

Wdi,fl

User Groups in Ũsent(τ)

U

U ′

U ′′

t

ỹ{i,f1}(U)

ỹ{i,fl}(U
′′)

...

...

...

Figure 3.7: Max flow network associated with LP in (3.8).

Remark 4 The LP in (3.8) can also be expressed as a maximum flow problem. The associated

flow network consists of a source node s, a node for each f ∈ Ω(i), a node for each user group

U ∈ Ũsent(τ), and a terminal node t. There are edges with capacity r going from s to each f ∈ Ω(i)

and edges from f ∈ Ω(i) to node U ∈ Ũsent(τ) if f ∈ F{i,U}. The flow on such an edge is ỹ{i,f}(U).

Moreover, from each node U ∈ Ũsent(τ) to t there exist an edge of capacity z̃U (τ). These capacity

constraints model the first two inequality constraints in (3.8). Figure 3.7 illustrates an example

of this network. It is well-known that if all capacities in a flow network are integers, there exists

an integral maximum flow (Kleinberg and Tardos (2006), Chapter 7). Therefore, there exists an

integral solution for ỹ{i,f}(U)’s in (3.8) if z̃U (τ)’s are integers.

Example 15 In this example we show how the LP in (3.8) addresses the issue highlighted in

Example 14. We consider the setting of this example and solve (3.8) for the user groups in (3.7).

For simplicity, we only discuss the results for user groups {2, 3, 5} and {3, 4, 5}. The other user

groups follow the same rule. Before proceeding, we note that v2(τ) = 5, v3(τ) = 4, v4(τ) = 2 and

v5(τ) = 0. Our goal is to see how these numbers change if the server decides to transmit an equation

associated with either of user groups {2, 3, 5} or {3, 4, 5}. If the server chooses Û = {2, 3, 5} then

a nonzero solution for the ỹ{i,f}(Û)’s for the corresponding users is

ỹ{2,9}({2, 3}) = 1, ỹ{2,2}({1, 2, 3}) = 1, ỹ{2,8}({2, 3, 4}) = 1,

ỹ{2,4}({1, 2}) = 1, ỹ{2,3}({1, 2, 4}) = 1, ỹ{3,3}({1, 3}) = 0.0,

ỹ{3,4}({1, 3}) = 1.0, ỹ{3,7}({2, 3}) = 1, ỹ{3,1}({1, 2, 3}) = 1,

ỹ{3,6}({2, 3, 4}) = 1, ỹ{5,5}({2, 3, 5}) = 1.

www.manaraa.com

91

This solution results in w{2,{2,3,5}}(τ) = 5, w{3,{2,3,5}}(τ) = 4, and w{5,{2,3,5}}(τ) = 1. Therefore,

w{i,{2,3,5}}(τ)−vi(τ) is zero for i = 2, 3 and one for i = 5. This implies that w{i,{2,3,5}}(τ) correctly

captures the benefits of transmitting an equation corresponding to each user in {2, 3, 5}.

Now, we repeat the same analysis for user group {3, 4, 5}. After solving (3.8) for this user group

and user 3, the only change comparing to the solution of this user for the user group {2, 3, 5} is that

ỹ{3,10}({3, 4, 5}) = 1 and thus w{3,{3,4,5}}(τ) = 5. For the other users we have w{4,{3,4,5}}(τ) = 3

and w{5,{3,4,5}}(τ) = 1. Therefore, w{i,{3,4,5}}(τ) − vi(τ) = 1 for all i ∈ {3, 4, 5} and more users

benefit from this user group than {2, 3, 5}.

Note that user i needs to recover r|Ω(i)|−vi(τ) missing packets and it has Ti+∆i− τ time slots

to obtain them. Thus, the ratio of these quantities is a measure of the stringency of the deadline

of user i. Furthermore, based on the above discussion w{i,Û}(τ) − vi(τ) indicates the number of

packets that are useful to user i if Û was chosen for transmission. Therefore the metric ηU (τ) is

obtained by the following weighted sum.

ηU (τ) =
∑
i∈U

(
r|Ω(i)| − vi(τ)

)
Ti + ∆i − τ

(w{i,U}(τ)− vi(τ)).

At time τ = Tk, the server picks the first element x∗U (`) ∈ X ∗sorted such that ηU (τ) ≥ η0 for some

threshold η0 and transmits an equation corresponding to it. Unlike the synchronous case, we choose

a random linear combination of all missing subfiles of user i that can be transmitted by user group

U .

When r > 1, we subdivide a missing subfile into r packets that are denoted W{di,f,j} for

j = 1, . . . , r. Thus, the server transmits⊕
i∈U

⊕
f∈F{i,U}

r⊕
j=1

α{i,f,j,m}W{di,f,j},

at time interval [τ, τ+1) where m denotes the m-th equation transmitted by the server and α{i,f,j,m}

are chosen independently and uniformly at random from the finite field F. If none of the elements

in x∗U (`) ∈ X ∗sorted satisfy ηU (`) ≥ η0 then nothing will be transmitted at this time interval.

If a new user request does not come at time τ +1, then the server updates the user group values

and then solves (3.8) again to decide the user group for the time slot [τ + 1, τ + 2). The process

www.manaraa.com

92

continues this way until the next user request comes when the LP in (3.6) is solved. The complete

details are provided in Algorithm 5.

Algorithm 5 Recursive LP Algorithm

Input: Caches Zi for i ∈ [K], η0, {Ti,∆i}, for i ∈ [K].

1: Initialization:

2: set Usent(0)← ∅, Xoff ← ∅, `off ← 0, m← 1 and k ← 1.

3: set Mi = ∅, and vi(0) = 0 for i = 1, . . . ,K.

4: for τ = 0, 1, 2, . . . , Tmax do

5: if τ = Ti + ∆i and vi(τ) < r|Ω(i)| for some i then

6: return INFEASIBLE.

7: end if

8: if τ = Ti (a new user makes request) for some i then

9: k = arg maxi∈[K] τ = Ti
10: Solve LP (3.6). Form X ∗ and then X ∗sorted.

11: end if

12: If τ = Ti or τ = Ti + ∆i for some i then `off ← `off + 1.

13: if X ∗sorted 6= ∅ then

14: Pick first in order x∗U∗(`) ∈ X ∗sorted with ηU∗(τ) ≥ η0.

15: Randomly select α{i,f,j,m}’s from F and send

⊕
i∈U

⊕
f∈F{i,U}

r⊕
j=1

α{i,f,j,m}W{di,f,j},

16: If U∗ ∈ Usent(τ) then zU∗(τ+1)← zU∗(τ)+1, otherwise zU∗(τ+1) = 1 and Usent(τ+1)←
Usent(τ) ∪ {U∗}

17: If x̃U∗(`off) ∈ Xoff then x̃U∗(`off) ← x̃U∗(`off) + 1, otherwise x̃U∗(`off) = 1 and Xoff ←
Xoff ∪ {x̃U∗(`off)}

18: set x∗U∗(`)← x∗U∗(`)− 1, if x∗U∗(`) < 1 remove it from X ∗sorted.

19: For all i ∈ U∗, set vi(τ + 1)← w{i,U∗}(τ), set Mi ←Mi ∪ {m}, then m← m+ 1

20: for all U ∈ Usent(τ) \ {U∗} set zU (τ + 1)← zU (τ)

21: for all i ∈ [K] \ U∗ set vi(τ + 1)← vi(τ).

22: end if

23: end for

In general, there is no guarantee that Algorithm 5 will return a feasible schedule if the corresponding

offline schedule is feasible. In that sense, Algorithm 5 can be viewed as a heuristic with good

experimental performance. However, if Algorithm 5 does not return “INFEASIBLE”, we can show

that a feasible solution for the corresponding offline LP can be identified. This fact coupled with

www.manaraa.com

93

a usage of the Schwartz-Zippel Lemma allows us to conclude that our algorithm works with high

probability if it does not return “INFEASIBLE”.

Claim 9 For user requests, {Ti,∆i, di}, where i ∈ [K], if Algorithm 5 does not return “INFEASIBLE”

then there exists a feasible integral solution for the offline LP in (3.1).

Proof: For simplicity, we prove the claim for r = 1 and the proof for the general case follows

directly. We will construct xU (`) and y{i,f}(U) variables for the offline LP from the decisions made

in Algorithm 5. Note that we update the set Xoff with the user groups chosen in Algorithm 5. It

is not difficult to verify that for any x̃U (`) ∈ Xoff user group U is a member of U`. Moreover, the

algorithm assigns integer values to x̃U (`). Now, for any U ∈ U` in (3.1), we set xU (`) = x̃U (`) if

x̃U (`) ∈ Xoff and xU (`) = 0 otherwise. Therefore, xU (`)’s take integer values. Since at each time

only one equation is transmitted in Algorithm 5, the first condition
∑

U∈U` xU (`) ≤ |Π`| holds for

all ` ∈ [β].

For each i ∈ [K] we define [τi, τi + 1) to be the last time slot that user i benefits from the

equation transmitted by the server. Clearly we have that vi(τi + 1) ≥ |Ω(i)| otherwise Algorithm 5

will be infeasible at τ = Ti + ∆i. We let Ui,last to be the user group associated with this equation

where i ∈ Ui,last.

Note that Algorithm 5 tracks a set Usent(τ) that contains all the user groups that have been

used by the algorithm before time τ . We let ỹ{i,f}(U), f ∈ F{i,U} and U ∈ Usent(τi) with U 3 i be

the solution of (3.8) when solving it for w{i,Ui,last}(τi). Then, for each U ∈ ∪β`=1U` with U 3 i and

for each f ∈ F{i,U} we assign y{i,f}(U) = ỹ{i,f}(U) if U ∈ Usent(τi) and y{i,f}(U) = 0 otherwise. We

apply this assignment for all i ∈ [K]. Algorithm 5 assigns integer values to zU (τ)’s. From Remark

4 it follows that there exists an integral solution for ỹ{i,f}(U)’s and consequently the y{i,f}(U)’s as

well. With these assignments, we now demonstrate that the second and third conditions in (3.1)

hold.

For the second condition we note that if U /∈ Usent(τi) then y{i,f}(U) = 0 and we have nothing

to show. For U ∈ Usent(τi) we have that y{i,f}(U) = ỹ{i,f}(U). Recall that ỹ{i,f}(U) is the solution

of (3.8) at time τ = τi. By the way that zU (τ) has been updated in Algorithm 5, we have

www.manaraa.com

94

zU (τ) ≤ zU (Tmax). Therefore, we have zU (τi + 1) ≤ zU (Tmax) =
∑

`∈IU x̃U (`) and from (3.8) for

w{i,Ui,last}(τi), ∑
f∈F{i,U}

y{i,f}(U) =
∑

f∈F{i,U}

ỹ{i,f}(U) ≤ z̃U (τi) = zU (τi + 1)

≤
∑
`∈IU

x̃U (`) =
∑
`∈IU

xU (`).

For the third condition, consider any user i ∈ [K] and any f ∈ Ω(i). Recalling the definition of τi

and w{i,Ui,last}(τi), we know that w{i,Ui,last}(τi) = vi(τi + 1) ≥ |Ωi| which implies that in (3.8), we

have

|Ω(i)| ≤
∑

U∈Usent(τi),U3i

∑
f∈F{i,U}

ỹ{i,f}(U)

=
∑
f∈Ω(i)

∑
U∈U{i,f}∩Usent(τi)

ỹ{i,f}(U) ≤
∑
f∈Ω(i)

1 = |Ω(i)|,

where the last inequality comes from the second constraint in (3.8). The middle equality holds by

counting arguments for missing subfiles f ∈ Ω(i) and user groups in U ∈ Usent(τi). To verify this,

consider a bipartite graph in which the left and right nodes correspond to f ∈ Ω(i) and U ∈ Usent(τi)

with U 3 i respectively. There is an edge between nodes corresponding to f and U if and only if

f ∈ F{i,U}. We let ỹ{i,f}(U) to be the label of this edge. By the definition of U{i,f} we know that

f ∈ F{i,U} implies U ∈ U{i,f}. Therefore, outgoing edges from the node corresponding to f are

the edges between f and the nodes U ∈ U{i,f} ∩ Usent(τi). Similarly, the outgoing edges between

node U ∈ Usent(τi) with U 3 i are the edges between U and f ∈ F{i,U}. By counting ỹ{i,f}(U) in

two ways, from the left and right nodes, we have the required equality. Therefore, we have that∑
U∈U{i,f}∩Usent(τi) ỹ{i,f}(U) = 1 for any f ∈ Ω(i). This further implies that

∑
U∈U{i,f} y{i,f}(U) = 1

for all f ∈ Ω(i) and ends the proof.

The following lemma shows that if Algorithm 5 does not return “INFEASIBLE” then with high

probability each user recovers its missing subfiles from the transmitted equations.

Lemma 5 If Algorithm 5 does not return “INFEASIBLE” then with probability at least
(

1− 1
|F|

)rKF
all requests will be satisfied within their deadline.

www.manaraa.com

95

Proof: For simplicity, in the discussion below we assume that r = 1. The proof for r > 1 follows

in straightforward manner. By the way that Mi and vi(τ) are updated in Algorithm 5, we have

|Mi| = vi(τ) at each time τ . Furthermore, vi(Tmax) = |Ω(i)| for all i ∈ [K]. Therefore, each user

i ∈ [K] benefits from |Ω(i)| equations. For a m ∈Mi, let
⊕

i∈U
⊕

f∈F{i,U} α{i,f,m}W{di,f} represent

the m-th equation (the dependence on index j is suppressed since we assume that r = 1). User

i ∈ U can recover
⊕

f∈F{i,U} α{i,f,m}W{di,f} from this equation since the missing subfiles W{dj ,f ′},

for f ′ ∈ F{j,U} and j ∈ U \ {i}, exist in the cache of user i.

For each user i ∈ [K] we define matrix Bi ∈ F|Ω(i)|×|Ω(i)| whose rows and columns correspond

to equation numbers in Mi and missing subfiles in Ω(i) respectively. For m ∈ Mi, assume that

m-th equation is associated with user group U , where i ∈ U . Then, the entry of Bi for the row

and column corresponding to m ∈ Mi and f ∈ Ω(i) is α{i,f,m} if f ∈ F{i,U} and zero otherwise.

Therefore, if matrix Bi is invertible then user i can recover all the missing subfiles W{di,f}, for

f ∈ Ω(i), from equations
∑

f∈F{i,U} α{i,f,m}W{di,f} for m ∈ Mi. Thus, we need to show that the

determinant of Bi is nonzero for all i ∈ [K] with high probability.

Towards this end, let hi({α{i,f,m}, f ∈ Ω(i), m ∈Mi}) denote the determinant of Bi; we treat

the {α{i,f,m}, f ∈ Ω(i), m ∈ Mi} as indeterminates at this point. Note that since Algorithm 5

did not return “INFEASIBLE”, we have a feasible integral solution for the corresponding offline LP

(cf. Claim 9). Thus, there exists an interpretation of this solution (cf. Section 3.3.2) such that in

each time slot, only one equation is transmitted, i.e., unlike a fractional solution, we do not need

to potentially transmit multiple equations in the same time slot. This in turn implies that there

is a setting for coefficients α{i,f,m} with α{i,f,m} ∈ {0, 1} such that the multivariate polynomial

hi evaluates to a non-zero value over F, i.e., hi is not identically zero. This further implies that

h =
∏
i∈[K] hi is not identically zero. Now, since each α{i,f,m} appears only once in Bi thus its

degree in polynomial hi is one. Also, hi is a polynomial of degree |Ω(i)| ≤ F thus h is a polynomial

of degree at most KF . Therefore, we can use Lemma 4 in Ho et al. (2006) to show that by choosing

α{i,f,m}’s independently and uniformly at random from F, the determinants of Bi’s, i ∈ [K], are

nonzero with probability at least
(

1− 1
|F|

)KF
.

www.manaraa.com

96

Table 3.2: Execution time for solving the LP using our approach; we run 1000 iterations of subgradient

ascent. Columns 2 & 3 indicate the size of the associated flow network. The table is ordered by the number

of nodes in the flow network.

(K, t) No. of nodes No. of edges Execution time (minutes) Execution time Orig. (minutes)

(100, 2) 986, 161 17, 643, 986 8, 026 —

(20, 4) 178, 542 1, 778, 703 1065 —

(40, 2) 61, 959 567, 780 63 —

(20, 2) 7, 542 43, 507 1.9 21.9

(10, 4) 3, 917 29, 369 0.8 5.33

(10, 2) 915 3, 866 0.08 0.03

When r > 1 we will need to split a missing subfile W{di,f} into r sub-packets and code over

these as well. Thus, the corresponding system of equations will be of size Fr|Ω(i)|×r|Ω(i)| leading to

the bound
(

1− 1
|F|

)rKF
. Thus, by choosing |F| large enough, we can make the probability of

success as large as we want.

3.5 Simulation Results and Comparisons with Prior Work

In this section we present simulation results for both the proposed offline and the online

algorithms. Prior work in this area is primarily the work of Niesen and Maddah-Ali (2015) that

presents heuristics for the online scenario. However, we note that Niesen and Maddah-Ali (2015)

works with deadlines for subfiles and does not take into account the time take to transmit a packet.

It uses intuitively plausible rules to decide the equations transmitted by the server depending on

the deadlines of the users.

For both scenarios, the request arrival times {Ti, i ∈ [K]} are generated according to a Poisson

process with parameter λF . The arrival time is quantized to the nearest time slot. The deadlines

∆i, i ∈ [K] are generated uniformly at random from the range [∆min,∆max] (these values will be

specified for each setting below).

www.manaraa.com

97

0 100 200 300 400 500

2,000

2,500

3,000

Iterations

P
ri

m
a
l

S
o
lu

ti
o
n

Primal value over iters.
Optimal value

Figure 3.8: Convergence of primal recovery to the optimal solution for a system with N = K = 20, r = 1,

and t = 2. Dashed line is the optimal value obtained by solving (3.1).

3.5.1 Offline scenario simulation

In the first set of simulations we examine the execution time of our approach for various values

of (K, t) where t = KM/N is an integer; the placement scheme in Maddah-Ali and Niesen (2014)

was used. In these simulations we set r = 1, λ = 0.4, F =
(
K
t

)
, ∆min =

(
K−1
t

)
, and ∆max =

(
K
t+1

)
.

Table 3.2 shows the details of the overall execution time and the size of the corresponding flow

networks for the various instances. The last column of the table corresponds to the execution time

(in MATLAB) of the LP in (3.1), while the second-last column corresponds to the execution time

of the proposed approach above. It is evident that the proposed approach is significantly faster. In

fact, memory requirements make it infeasible to even formulate the problems corresponding to the

first three rows in MATLAB. Figure 3.8 shows the convergence of the primal recovery procedure

to the actual rate for a system with N = K = 20, t = 2, and r = 1. It can be observed that there

is a clear convergence of the solution to the optimal value.

3.5.2 Online scenario simulation

For the online scenario we consider both centralized Maddah-Ali and Niesen (2014) and decentralized

Maddah-Ali and Niesen (2015) placement schemes for a system with N = K = 6 and M = 2 with

∆min = (KM/N)F and ∆max = KF . For each experiment we run 200 trials for generating the

www.manaraa.com

98

0 0.5 1 1.5 2

1.5

2

2.5

3

1/(Fλ), Poisson Process parameter

A
ve

ra
ge

C
o
d

in
g

G
ai

n

Case I, low threshold
Case II, high threshold

Offline in (3.1)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1/(Fλ), Poisson Process parameter

F
ea

si
b

il
it

y
P

ro
b

ab
il

it
y

Case I, low threshold
Case II, high threshold

Fraction of subfiles Niesen and Maddah-Ali (2015)

Entire file Niesen and Maddah-Ali (2015)

(a) (b)

Figure 3.9: Centralized Placement in Maddah-Ali and Niesen (2014): (a) average coding gain over all

feasible offline problem instances, (b) feasibility probability of the online algorithm conditioned on feasibility

of the offline problem. The placement has been fixed for all trials and at each trial a new arrival time and

deadline is generated. In this simulation, we set η0 = 0.4− 0.5
λ and η0 = 0.8− 0.2

λ in Case I and II respectively.

arrivals. For the centralized case, we use the placement scheme of Maddah-Ali and Niesen (2014)

and the placement is fixed during each experiment. In the decentralized scheme, at each trial the

cache content of each user is independently and uniformly chosen as well.

For each set of generated arrivals, we first run the offline LP to check whether it is feasible. The

online algorithm is run only if the offline LP is feasible. The online algorithm requires a threshold

η0 (see Section 3.4.2). We run simulations with a low threshold (case I) and a high threshold (case

II). The coding gain is defined as the ratio of the uncoded rate3 to the rate achieved by the system.

Figure 3.9 (a) and Figure 3.10 (a) depict plots of the coding gain vs. 1/(Fλ) in centralized and

decentralized cases, respectively. As λ decreases, the arrivals are spaced further apart on average,

and the coding gain of any scheme is expected to reduce. The coding gain is computed by taking

an average overall all instances where a given scheme is feasible. For the offline scheme this means

that we take the average of all instances where it is feasible. For the case II of the online algorithm,

some of arrival patterns may result in infeasibility; these instances were not taken into account

when computing the average coding gain. This explains why the coding gain of case II sometimes

3The uncoded rate is simply the total number of missing subfiles of the all users normalized by F .

www.manaraa.com

99

0 0.5 1 1.5 2 2.5

1.4

1.6

1.8

2

1/(Fλ), Poisson Process parameter

A
ve

ra
g
e

C
o
d

in
g

G
a
in

Case I, low threshold
Case II, high threshold

Offline in (3.1)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1/(Fλ), Poisson Process parameter

F
ea

si
b

il
it

y
P

ro
b

ab
il

it
y

Case I, low threshold
Case II, high threshold

Fraction of subfiles Niesen and Maddah-Ali (2015)

Entire file Niesen and Maddah-Ali (2015)

(a) (b)

Figure 3.10: Decentralized placement scheme for N = K = 6, M = 2, and F = 100: (a) average coding gain

over all feasible offline problem instances, (b) feasibility probability of the online algorithm conditioned on

feasibility of the offline problem. At each trial cache content of each user is placed randomly and uniformly.

In this simulation, we set η0 = 0.4− 0.5
λ and η0 = 0.8− 0.2

λ in Case I and Case II respectively.

appears to be higher than the offline algorithm. However, the coding gain of case I is significantly

lower, because of its low threshold.

The feasibility probability of a scheme vs. the arrival rate is plotted in Figure 3.9 (b) and

Figure 3.10 (b) for the centralized and decentralized placement schemes respectively. As expected

the low threshold online algorithm has a very high feasibility probability ≈ 1 for a range of arrival

parameters, while the high threshold algorithm has a lower feasibility probability.

For both plots, we also include the results of Niesen and Maddah-Ali (2015). In this scheme

feasibility and coding gain can be traded off by setting a threshold for the defined misfit function

(Section III in Niesen and Maddah-Ali (2015)). We use this scheme by setting the threshold to zero;

this is the so-called First-Fit Rule in Niesen and Maddah-Ali (2015). The First-Fit rule prefers

feasibility over coding gain. The setting in Niesen and Maddah-Ali (2015) considers a scenario where

each subfile has a deadline. We have adapted their algorithm for our case. It can be observed that

the feasibility probability of Niesen and Maddah-Ali (2015) is quite poor. Accordingly we also plot

the fraction of subfiles that meet the deadline; this is somewhat better. The coding gain numbers

www.manaraa.com

100

0 0.5 1 1.5 2 2.5
1

1.2

1.4

1.6

1.8

2

1/(Fλ), Poisson Process parameter

A
ve

ra
ge

C
o
d

in
g

G
ai

n

Case I
Case II

Offline in (3.1)

Scheme Niesen and Maddah-Ali (2015)

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1/(Fλ), Poisson Process parameter

F
ea

si
b

il
it

y
P

ro
b

ab
il

it
y

Case I, low threshold

Case II, high threshold

All users Niesen and Maddah-Ali (2015)

Recovery of a subfile in Niesen and Maddah-Ali (2015)

(a) (b)

Figure 3.11: Decentralized placement scheme with single chunk request for K = N = 6, M = 2, and F = 20:

(a) average coding gain over all feasible offline problem instances, (b) feasibility probability of the online

algorithm conditioned on feasibility of the offline problem. For the scheme in Niesen and Maddah-Ali (2015)

two probabilities are reported. The first one is the probability that all requests are satisfied, and the second

one is the probability that a fixed request is satisfied (lines with circle and diamond marks respectively). At

each trial, the cache content of each user is populated randomly and uniformly. In this simulation, we set

η0 = 0.4− 0.5
λ and η0 = 0.8− 0.2

λ in Case I and Case II respectively.

for Niesen and Maddah-Ali (2015) are also quite unreliable as the algorithm is infeasible in most

cases. Thus, we do not plot it.

3.5.3 Scenario where individual subfiles have deadlines

The work of Niesen and Maddah-Ali (2015) considers a situation where each subfile has its own

deadline. This is inspired by applications such as video delivery over the Internet. We emphasize

that this setting can be captured by our techniques. In particular, suppose that each user requests a

set of subfiles from the server where the subfile requests arrive at different times and each subfile has

a different deadline. In this case we can treat each subfile request of user i ∈ [K] as corresponding

to a distinct virtual user whose cache content is the same as user i. However, the requests of the

users are different. In this situation, each virtual user has precisely one missing subfile. Thus, the

issue of coding over the corresponding subfiles does not arise.

www.manaraa.com

101

Our setting is again one where K = N = 6, M = 2. Each file is subdivided into F =

20 subfiles. Arrival times and deadlines are generated similar to the previous simulations with

Poisson parameters 1/(λF) and the deadlines are randomly chosen uniformly from [∆min,∆max]

with ∆min = KMF/N and ∆max = KF . Similar to the previous experiments we run 200 trials

and at each trial, the cache content of each user is populated randomly and uniformly among all

placement schemes with cache of size MF subfiles. Thus, different users might request different

number of chunks from the server. The only difference is that here each requested chunk has its

own arrival time and deadline. The results are illustrated in Figure 3.11. It can be observed that

our proposed approach provides significantly superior coding gain and feasibility probability as

compared to the work of Niesen and Maddah-Ali (2015).

3.6 Conclusions and Future Work

In this work we considered the asynchronous coded caching problem where user requests (with

deadlines) arrive at the main server at different times. We considered both offline and online

versions of this problem. We demonstrated that under the assumption of all but one equations, the

offline scenario can be solved by a linear program (LP). Moreover, we presented a low-complexity

solution to this LP based on dual decomposition. In contrast to the synchronous case and the offline

scenario, we show that the online scenario requires coding across missing subfiles of a given user.

Furthermore, we present an online algorithm that leverages the offline LP in a recursive fashion.

Extensive simulation results indicate that our proposed algorithm significantly outperforms prior

algorithms.

Our online algorithm considers the situation where there is no knowledge about future request

arrival times and file identities; this corresponds to a worst-case scenario. It would be interesting to

consider cases where there is statistical information available on the arrival times and file popularity

and investigate how this knowledge can be used to further improve the performance of the algorithm.

Variants of the problem, with soft deadline constraints may also be of interest.

www.manaraa.com

102

REFERENCES

Ahuja, R. K., Maganti, T. L., and Orlin, J. B. (1993). Network Flows:Theory, Algorithms and

Applications. Prentice-Hall.

Ajaykrishnan, N., Prem, N. S., Prabhakaran, V. M., and Vaze, R. (2015). Critical database size

for effective caching. In IEEE 2015 Twenty First National Conf. on Comm., pages 1–6.

Applegate, D., Archer, A., Gopalakrishnan, V., Lee, S., and Ramakrishnan, K. K. (2010). Optimal

content placement for a large-scale vod system. In Proc. ACM 6th Intl. Conf. on Emerging

Networking Experiments and Technologies (Co-NEXT).

Arbabjolfaei, F., Kim, Y.-H., et al. (2018). Fundamentals of index coding. Foundations and

Trends R© in Communications and Information Theory, 14(3-4):163–346.

Bar-Yossef, Z., Birk, Y., Jayram, T., and Kol, T. (2011). Index coding with side information. IEEE

Trans. on Info. Th., 57(3):1479–1494.

Borst, S. C., Gupta, V., and Walid, A. (2010). Distributed caching algorithms for content

distribution networks. In Proc. IEEE INFOCOM, pages 1478–1486.

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university press.

Breslau, L., Cao, P., Fan, L., Phillips, G., and Shenker, S. (1999). Web caching and zipf-like

distributions: evidence and implications. In Proc. IEEE INFOCOM, pages 126–134.

Cover, T. M. and Thomas, J. A. (2012). Elements of information theory. John Wiley & Sons.

Ghasemi, H. and Ramamoorthy, A. (2015). Improved lower bounds for coded caching. In IEEE

Intl. Symp. on Info. Th., pages 1696–1700.

www.manaraa.com

103

Ghasemi, H. and Ramamoorthy, A. (2016). Further results on lower bounds for coded caching. In

2016 IEEE International Symposium on Information Theory (ISIT), pages 2319–2323.

Ghasemi, H. and Ramamoorthy, A. (2017a). Algorithms for asynchronous coded caching. In 2017

51st Asilomar Conference on Signals, Systems, and Computers, pages 636–640.

Ghasemi, H. and Ramamoorthy, A. (2017b). Asynchronous coded caching. IEEE Intl. Symp. on

Info. Th., pages 2438–2442.

Ghasemi, H. and Ramamoorthy, A. (2017c). Improved lower bounds for coded caching. IEEE

Trans. on Info. Th., 63(7):4388–4413.

Golrezaei, N., Molisch, A., Dimakis, A., and Caire, G. (2013). Femtocaching and device-to-

device collaboration: A new architecture for wireless video distribution. IEEE Comm. Magazine,

51(4):142–149.

Hachem, J., Karamchandani, N., and Diggavi, S. (2014a). Multi-level coded caching. In IEEE Intl.

Symp. on Info. Th., pages 56–60.

Hachem, J., Karamchandani, N., and Diggavi, S. N. (2014b). Coded caching for heterogeneous

wireless networks with multi-level access.

Ho, T., Medard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., and Leong, B. (2006). A random

linear network coding approach to multicast. IEEE Trans. on Info. Th., 52(10):4413–4430.

Ji, M., Caire, G., and Molisch, A. F. (2013). Fundamental limits of distributed caching in d2d

wireless networks. In IEEE Info. Th. Workshop, pages 1–5.

Ji, M., Tulino, A. M., Llorca, J., and Caire, G. (2014a). Order optimal coded caching-aided

multicast under zipf demand distributions. In The 11th Intl. Symp. on Wireless Comm. Sys.

Ji, M., Tulino, A. M., Llorca, J., and Caire, G. (2014b). Order optimal coded delivery and caching:

Multiple groupcast index coding.

www.manaraa.com

104

Jiang, Y., Huang, W., Bennis, M., and Zheng, F. (2019 (to appear)). Decentralized asynchronous

coded caching design and performance analysis in fog radio access networks. IEEE Trans. on

Mob. Comput.

Karamchandani, N., Niesen, U., Maddah-Ali, M., and Diggavi, S. (2014). Hierarchical coded

caching. In IEEE Intl. Symp. on Info. Th., pages 2142–2146.

Kleinberg, J. and Tardos, E. (2006). Algorithm design.

Korupolu, M. R., Plaxton, C. G., and Rajaraman, R. (1999). Placement algorithms for hierarchical

cooperative caching. In Proc. ACM-SIAM SODA, pages 586–595.

Kovacs, P. (2015). Minimum-cost flow algorithms: an experimental evaluation. Optimization

Methods and Software, 30(1):94–127.

Lampiris, E. and Elia, P. (2018). Adding transmitters dramatically boosts coded-caching gains for

finite file sizes. IEEE J. Select. Areas Comm., 36(6):1176–1188.

Lee, K., Lam, M., Pedarsani, R., Papailiopoulos, D., and Ramchandran, K. (2015). Speeding up

distributed machine learning using codes.

LEMON. Library for efficient modeling and optimization in networks.

Li, S., Maddah-Ali, M. A., Yu, Q., and Avestimehr, A. S. (2016). A fundamental tradeoff between

computation and communication in distributed computing.

Lu, C., Stankovic, J. A., Tao, G., and Son, S. H. (1999). Design and evaluation of a feedback control

edf scheduling algorithm. In Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.

99CB37054), pages 56–67. IEEE.

Lu, Y., Chen, W., and Poor, H. V. (2018). Coded joint pushing and caching with asynchronous

user requests. IEEE J. Select. Areas Comm., 36(8):1843–1856.

Lubetzky, E. and Stav, U. (2009). Nonlinear index coding outperforming the linear optimum. IEEE

Trans. on Info. Th., 55(8):3544–3551.

www.manaraa.com

105

Lun, D. S., Ratnakar, N., Médard, M., Koetter, R., Karger, D. R., Ho, T., Ahmed, E., and Zhao,

F. (2006). Minimum-cost multicast over coded packet networks. IEEE Trans. on Info. Th.,

52(6):2608–2623.

Maddah-Ali, M. and Niesen, U. (2014). Fundamental limits of caching. IEEE Trans. on Info. Th.,

60(5):2856–2867.

Maddah-Ali, M. A. and Niesen, U. (2015). Decentralized coded caching attains order-optimal

memory-rate tradeoff. IEEE/ACM Trans. Netw., 23(4):1029–1040.

Meyerson, A., Munagala, K., and Plotkin, S. (2001). Web caching using access statistics. In Proc.

ACM-SIAM SODA, pages 354–363.

Naderializadeh, N., Maddah-Ali, M. A., and Avestimehr, A. S. (2017). On the optimality of

separation between caching and delivery in general cache networks. In IEEE Intl. Symp. on Info.

Th., pages 1232–1236.

Niesen, U. and Maddah-Ali, M. (2016). Coded caching with nonuniform demands. IEEE Trans.

on Info. Th., 63(2):1146–1158.

Niesen, U. and Maddah-Ali, M. A. (2015). Coded caching for delay-sensitive content. In IEEE Intl.

Conf. Comm., pages 5559–5564.

Pedarsani, R., Maddah-Ali, M., and Niesen, U. (2014). Online coded caching. In IEEE Intl. Conf.

Comm., pages 1878–1883.

Ramamoorthy, A. (2011). Minimum cost distributed source coding over a network. IEEE Trans.

on Info. Th., 57(1):461–475.

Ramamritham, K., Stankovic, J. A., and Shiah, P.-F. (1990). Efficient scheduling algorithms

for real-time multiprocessor systems. IEEE Transactions on Parallel and Distributed systems,

1(2):184–194.

www.manaraa.com

106

Sengupta, A. and Tandon, R. (2015). Beyond cut-set bounds-the approximate capacity of d2d

networks. In IEEE Info. Th. Workshop, pages 78–83.

Sengupta, A., Tandon, R., and Clancy, T. C. (2015a). Fundamental limits of caching with secure

delivery. IEEE Trans. on Info. Forensics and Security, 10(2):355–370.

Sengupta, A., Tandon, R., and Clancy, T. C. (2015b). Improved approximation of storage-rate

tradeoff for caching via new outer bounds. In IEEE Intl. Symp. on Info. Th., pages 1691–1695.

IEEE.

Shanmugam, K., Golrezaei, N., Dimakis, A., Molisch, A., and Caire, G. (2013). Femtocaching:

Wireless content delivery through distributed caching helpers. IEEE Trans. on Info. Th.,

59(12):8402–8413.

Sherali, H. D. and Choi, G. (1996). Recovery of primal solutions when using subgradient

optimization methods to solve Lagrangian duals of linear programs. Operations Research Letters,

19(3):105–113.

Spuri, M. and Buttazzo, G. C. (1994). Efficient aperiodic service under earliest deadline scheduling.

In RTSS, pages 2–11.

Tan, B. and Massoulié, L. (2013). Optimal content placement for peer-to-peer video-on-demand

systems. IEEE/ACM Trans. on Netw., 21(2):566–579.

Tang, L. and Ramamoorthy, A. (2016a). Coded caching for networks with the resolvability property.

In IEEE Intl. Symp. on Info. Th.

Tang, L. and Ramamoorthy, A. (2016b). Coded Caching with Low Subpacketization Levels. In

Workshop on Network Coding (NetCod).

Tang, L. and Ramamoorthy, A. (2017). Low Subpacketization Level Schemes for Coded Caching.

In IEEE Intl. Symp. on Info. Th.

www.manaraa.com

107

Tang, L. and Ramamoorthy, A. (2018). Coded caching schemes with reduced subpacketization

from linear block codes. IEEE Trans. on Info. Th., 64(4):3099–3120.

Tian, C. (2015). A note on the fundamental limits of coded caching.

Wan, K., Ji, M., Piantanida, P., and Tuninetti, D. (2018). Caching in combination networks:

Novel multicast message generation and delivery by leveraging the network topology. In IEEE

Intl. Conf. Comm., pages 1–6.

Wessels, D. (2001). Web Caching. O’ Reilly.

Wolman, A., Voelker, M., Sharma, N., Cardwell, N., Karlin, A., and Levy, H. M. (1999). On the

scale and performance of cooperative web proxy caching. ACM SIGOPS, 33(5):16–31.

Yan, Q., Cheng, M., Tang, X., and Chen, Q. (2015 [Online] Available:

http://arxiv.org/abs/1510.05064). On the placement delivery array design in centralized

coded caching scheme.

Yan, Q., Cheng, M., Tang, X., and Chen, Q. (2017). On the placement delivery array design for

centralized coded caching scheme. IEEE Trans. on Info. Th., 63(9):5821–5833.

Yang, Q., Amiri, M. M., and Gündüz, D. (2019). Audience-retention-rate-aware caching and coded

video delivery with asynchronous demands.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. (2017). The exact rate-memory tradeoff for

caching with uncoded prefetching. IEEE Trans. on Info. Th., 64(2):1281–1296.

Yu, Q., Maddah-Ali, M. A., and Avestimehr, A. S. (2019). Characterizing the rate-memory tradeoff

in cache networks within a factor of 2. IEEE Trans. on Info. Th., 65(1):647–663.

Zhang, J., Lin, X., Wang, C.-C., and Wang, X. (2015). Coded caching for files with distinct file

sizes. In IEEE Intl. Symp. on Info. Th., pages 1686–1690.

www.manaraa.com

108

APPENDIX A. PROOFS FOR LOWER BOUNDS

Lemma 6 Algorithm 1 always provides a valid lower bound on αR?+βM where α =
∑`

i=1 |D(vi)|

and β =
∑`

i=1 |Z(vi)|.

Proof: Consider any internal node v ∈ T . We have

∑
u∈in(v)

H(Z(u) ∪D(u)|W(u) ∪Wnew(u)),

(a)

≥
∑

u∈in(v)

H(Z(u) ∪D(u)|W(v)),

(b)

≥ H(Z(v) ∪D(v)|W(v)),

(c)
= I(Wnew(v);Z(v) ∪D(v)|W(v))

+H(Z(v) ∪D(v)|W(v) ∪Wnew(v)),

where inequality in (a) holds since W(u) ∪Wnew(u) ⊆W(v) and conditioning reduces entropy, (b)

holds since ∪u∈in(v)Z(u) = Z(v) and ∪u∈in(v)D(u) = D(v) and (c) holds by the definition of mutual

information. Let Vint denote the set of internal nodes in T . Let v∗ denote the root and (u∗, v∗)

denote its incoming edge. Then,

∑
v∈Vint

∑
u∈in(v)

H(Z(u) ∪D(u)|W(u) ∪Wnew(u)) ≥

∑
v∈Vint

y(v,out(v)) +
∑
v∈Vint

H(Z(v) ∪D(v)|W(v) ∪Wnew(v)),

where we have ignored the infinitesimal terms introduced due to Fano’s inequality (for convenience

of presentation). Note that the RHS of the inequality above contains terms of the form H(Z(v) ∪

D(v)|W(v) ∪Wnew(v)) for all nodes v ∈ Vint (including u∗).

www.manaraa.com

109

On the other hand the LHS contains terms of a similar form for all nodes including the leaf

nodes but excluding the node u∗. Canceling the common terms, we obtain,∑̀
i=1

H(Z(vi) ∪D(vi)|Wnew(vi)) ≥∑
v∈Vi

y(v,out(v))

+H(Z ∪D(u∗)|W(u∗),Wnew(u∗)),

since W(vi) = φ for i = 1, . . . , `. We can therefore conclude that∑̀
i=1

H(Z(vi),D(vi)) ≥
∑
v∈V

y(v,out(v)) (A.1)

=⇒
∑̀
i=1

H(Z(vi)) +
∑̀
i=1

H(D(vi)) ≥
∑
v∈V

y(v,out(v)) (A.2)

Noting that M ≥ H(Z(vi)) and R? ≥ H(D(vi)) we have the required result.

A.0.1 Proof of Claim 1

Proof: We iteratively modify the problem instance P (T , α, β, L,N,K) to arrive at an instance

where every node has in-degree at most two. Towards this end, we first identify a node u with

in-degree δ ≥ 3 such that no other node is topologically higher than it (such a node may not be

unique).

We modify the instance P by replacing u with a directed in-tree where each node has in-degree

exactly two. Specifically, arbitrarily number the nodes in in(u) from v′1, . . . , v
′
δ. We replace the

node u with a directed in-tree Tu with leaves v′1, . . . , v
′
δ and root u. Tu has δ − 2 internal nodes

numbered u′1, . . . , u
′
δ−2 such that in(u′i) = {u′i−1, v

′
i+1} where u′0 = v′1 (see Fig. A.1). Let us denote

the new instance by Po = Po(To, α, β, Lo, N,K). We claim that Lo ≥ L. To see this, suppose

that W ∗ ∈ WP
new(u). We show that W ∗ ∈ ∪u′∈TuWPo

new(u′). This ensures that Lo ≥ L. To see this

we note that

ZP (u) = ZPo(u)

DP (u) = DPo(u), and thus,

∆P (u, u) = ∆Po(u, u).

www.manaraa.com

110

v′1 v′2 v′3 v′δ

u

v′1 v′2
v′3

v′δ

u′1
u′2

u

Figure A.1: Tree modification example

Thus, if W ∗ ∈ WP
new(u), there exists an internal node u′i ∈ Tu with the smallest index i ∈

{1, . . . , δ − 2} such that W ∗ ∈ ∆Po(u′i, u
′
i). Note that if i > 1, we have W ∗ ∈ WPo

new(u′i) since

W ∗ /∈ ∆Po(u′i−1, u
′
i−1) which in turn implies that W ∗ /∈WPo(u′i). On the other hand if i = 1, then

a similar argument holds since it is easy to see that W ∗ /∈WPo(u′1).

Note that the modification in the instance P can only affect nodes that are downstream of u.

Now consider u′ such that u ∈ in(u′). It is evident that ZPo(u′) = ZP (u′) and DPo(u′) = DP (u′).

Moreover WPo(u′) = ∪v∈in(u′)W
Po(v)∪WPo

new(v). Now for v 6= u, WPo(v) = WP (v) and WPo
new(v) =

WP
new(v) as there are no changes in the corresponding subtrees. Moreover, as ∆P (u, u) = ∆Po(u, u),

we have that WPo(u)∪WPo
new(u) = WP (u)∪WP

new(u). This implies that WPo(u′) = WP (u′). Thus,

we can conclude that WPo
new(u′) = WP

new(u′). Applying an inductive argument we can conclude that

the WPo
new(u′) = WP

new(u′) for all u′ such that u � u′.

The above process can iteratively be applied to every node in the instance that is of degree at

least three. Thus, we have the required result.

A.0.2 Proof of Claim 3

Proof: We identify the set U as the set of all nodes in T such that the specified condition in the

claim holds. Let U∗ ⊂ U denote the set of nodes that are highest in the topological ordering. We

modify the instance in a way such that a node u∗ ∈ U∗ can be removed from U , i.e., the specified

condition no longer holds for it. Moreover, our modification procedure is such that a node u � u∗

cannot enter U at the end of the procedure.

We now discuss the modification procedure. In the discussion below, for a given node u, we

can consider the instance obtained with tree Tu. We let βu denote the number of cache nodes in

www.manaraa.com

111

this instance. Note that for u∗, the condition β̂∗ < min(β∗,K) holds. This implies that there is

a set of cache leaves in Tu∗ denoted {vi1 , . . . , vim} such that Z(vi1) = · · · = Z(vim) = {Zj}. Let

Λ = {u ∈ Tu∗ : (via , vib) meet at u, for all distinct via , vib ∈ {vi1 , . . . , vim}}. We identify u0 ∈ Λ

such that no element of Λ is topologically higher than u0 (note that u0 may not be unique) and

let v∗ia and v∗ib be one pair of the corresponding nodes in {vi1 , . . . , vim} that meet at u0. W.l.o.g we

assume that v∗ib ∈ Tu0(r) and v∗ia ∈ Tu0(l).

We claim that u0 = u∗. Assume that this is not the case. Since u0 ∈ Tu∗ we have u0 � u∗. Using

this and the fact that u0 /∈ U we have | ∪v∈Cu0 Z(v)| = min(|Cu0 |,K). Now, from v∗ia , v
∗
ib
∈ Cu0 and

that Z(v∗ia) = Z(v∗ib) we conclude that min(|Cu0 |,K) = K. Moreover, as ∪u∈Tu0Z(u) ⊆ ∪u∈Tu∗Z(u)

we have β̂ = K which contradicts β̂ < min(β,K). Therefore u0 = u∗.

We construct instance P ′ (with lower bound L′) as follows. Choose a member of {Z1, . . . , ZK}\

{Z(v′) : v′ ∈ Cu∗} and denote it by Zk. We set ZP
′
(v∗ib) = {Zk}. Also, for any u ∈ Du0(r) and

DP (u) = Xd1,...,dK we set DP
′
(u) = Xd′1,...,d

′
K

such that d′j = dk and d′k = dj and d′i = di for

i /∈ {j, k}, i.e., we interchange the j-th and k-th labels and keep the other labels the same. With

this modification, it can be seen that β̂∗ = min(β∗,K).

For nodes u � u∗, the change we applied to cache nodes in Cu∗ to get P ′ is such that β̂u continues

to equal min(βu,K) since Zk is chosen from {Z1, . . . , ZK} \ {Z(v′) : v′ ∈ Cu∗}

We now show that L′ ≥ L. In particular, for u ∈ Tu0(l), we have WP ′
new(u) = WP

new(u), as

there are no changes in the corresponding labels. Also we claim that WP ′
new(u) = WP

new(u) for

u ∈ Tu0(r). To see this, note that for v ∈ Du0(r) and v′ ∈ Cu0(r) we have ∆P ′(v′, v) = ∆P (v′, v) if

Z(v′) /∈ {Zj , Zk}. If ZP
′
(v′) = {Zk} and DP

′
(v) = Xd′1,...,d

′
K

then,

∆P ′(v′, v) = Rec({Zk}, {Xd′1,...,d
′
K
})

= {Wd′k
} = {Wdj}

= Rec({Zj}, {Xd1,...,dK})

= ∆P (v′, v).

www.manaraa.com

112

Furthermore, note that there does not exist any v′ ∈ Cu0(r) such that Z(v′) = {Zj} since we picked

u0 such that no element of Λ is topologically higher than u0. From eq. (2.5) and (2.6), it is not

hard to see that this in turn implies that WP ′
new(u) = WP

new(u) for u ∈ Tu0(r).

It follows therefore that WP ′(u0) = WP (u0) (from eq. (2.6)). Let us now consider the other

nodes. As the changes are applied only to Tu0(r) so label(u) changes only for nodes u such that

u0 � u. Consider the subset of internal nodes U = {u0, u1, . . . , ut} such that (ui, ui+1) is an

edge, i.e., the set of internal nodes including u0 and all nodes downstream of u0 such that ut

is the last internal node. W.l.o.g we assume that ui−1 ∈ Tui(l) for i ≥ 1. We now show that

∪u∈UWP
new(u) ⊆ ∪u∈UWP ′

new(u). Towards this end we have the following observations for u ∈ U .

ZP
′
(u) = ZP (u) ∪ {Zk} (from the construction of P ′)

∆P ′(u, u) = ∪v∈Du∆P ′(u, v).

Now, for v /∈ Du0(r) we have DP
′
(v) = DP (v) so that

∆P ′(u, v) = Rec(ZP
′
(u),DP

′
(v))

= Rec(ZP
′
(u),DP (v))

⊇ ∆P (u, v)(since ZP
′
(u) ⊇ ZP (u)).

Conversely, for v ∈ Du0(r) we have

Rec
(
{Zj , Zk},DP

′
(v)
)

= Rec
(
{Zj , Zk},DP (v)

)
,

and

Rec
(
{Zi},DP

′
(v)
)

= Rec
(
{Zi},DP (v)

)
(for Zi /∈ {Zj , Zk}).

Now, note that {Zk, Zj} ⊆ ZP
′
(u) so that

∆P ′(u, v) = Rec
(
ZP

′
(u),DP

′
(v)
)

= Rec
(
ZP

′
(u),DP (v)

)
,

⊇ Rec
(
ZP (u),DP (v)

)
= ∆P (u, v),

www.manaraa.com

113

since ZP
′
(u) ⊇ ZP (u). We can therefore conclude that the following statement holds for ∆P (u, u)

and ∆P ′(u, u).

∆P (u, u) = ∪v∈Du∆P (u, v) ⊆ ∪v∈Du∆P ′(u, v) = ∆P ′(u, u).

Now we consider a W ∗ ∈WP
new(ui) so that W ∗ ∈ ∆P (ui, ui) which by above condition means that

W ∗ ∈ ∆P ′(ui, ui). Thus either W ∗ ∈ WP ′
new(ui) or W ∗ ∈WP ′(ui). In the latter case there exists a

node ui′ where 0 ≤ i′ < i such that W ∗ ∈ WP ′
new(ui′) since W ∗ /∈ W(u0) and we have shown that

WP ′(u0) = WP (u0). Thus, we observe that

L′ = | ∪u∈U WP ′
new(u)|+

∑
u∈T ′,u/∈U

|WP ′
new(u)|,

≥ | ∪u∈U WP
new(u)|+

∑
u∈T ,u/∈U

|WP
new(u)|,

= L,

where the second inequality holds since
∑

u∈T ′,u/∈U |WP ′
new(u)| =

∑
u∈T ,u/∈U |WP

new(u)| and | ∪u∈U

WP ′
new(u)| ≥ | ∪u∈U WP

new(u)|.

As discussed before, the modification procedure is such that at the end of the operation u∗ /∈ U .

Moreover nodes u � u∗ are not in U either. For each node u ∈ U let d(u) denote the number

of edges in the path connecting u to the root node. Our modification procedure is such that

d∗ = maxu∈U d(u) is guaranteed to decrease over the course of the iterations. Indeed, if |U∗| = 1,

then at the end of the iteration d∗ will definitely decrease. If |U∗| > 1, then d∗ will definitely

decrease after the modification procedure is applied to all the nodes in U∗. Thus, the sequence of

iterations is guaranteed to terminate. This observation concludes the proof.

A.0.3 Proof of Lemma 1

Proof:

Given the conditions of the theorem, from Corollary 1 we can conclude that there exists an index

i∗ ∈ {1, . . . , α} such that
∑

v′∈C ψ(vi∗ , v
′) < min(β,K). We set i∗ to be the smallest such index. Let

www.manaraa.com

114

Π1(vi∗) = {v′ ∈ C : ψ(vi∗ , v
′) = 1} and Π0(vi∗) = {v′ ∈ C : ψ(vi∗ , v

′) = 0,Z(v′) * ∪v∈Π1(vi∗)Z(v)}.

Note that Π0(vi∗) is non-empty since | ∪v′∈C Z(v′)| = min(β,K) and
∑

v′∈C ψ(vi∗ , v
′) < min(β,K).

Next, we determine the set of nodes where vi∗ and the nodes in Π0(vi∗) meet, i.e., we define

Λ0(vi∗) = {u ∈ T : ∃v′ ∈ Π0(vi∗) such that vi∗ and v′ meet at u.}. Note that there is a topological

ordering on the nodes in Λ0(vi∗). Pick the node u∗ ∈ Λ0(vi∗) such that no element of Λ0(vi∗) is

topologically higher than u∗ (u∗ is in the path from vi∗ to the root node). Let the corresponding

node in Π0(vi∗) be denoted by vj∗ where j∗ ∈ {α + 1, . . . , α + β}. Note that vj∗ might not be

unique.

Suppose that Z(vj∗) = {Zk} and that D(vi∗) = Xd1,...,dK . We modify the instance P as follows.

Set dk = N + 1 (i.e., the index of the N + 1 file). Thus, the only change is in D(vi∗). Let us denote

the new instance by P ′ = P (T ′, α, β, L′, N + 1,K).

We now analyze the value of L′. W.l.o.g. we assume that vi∗ ∈ T ′u∗(l) and vj∗ ∈ T ′u∗(r). Note

that WP ′
new(u) = WP

new(u) for u ∈ T ′u∗(r) as the subtree T ′u∗(r) is identical to Tu∗(r). We also have

WP ′
new(u) = WP

new(u) for u ∈ T ′u∗(l).

To see this suppose that this is not true. This implies that the file WN+1 is recovered at some node

in T ′u∗(l), i.e., there exists v′ ∈ C such that v′ ∈ T ′u∗(l), Z(v′) = {Zk}, and that v′ and vi∗ meet at

some u � u∗. From vj∗ ∈ Π0(vi∗) we can conclude that {Zk} * ∪v∈Π1(vi∗) and v′ ∈ Π0(vi∗) (as

Z(v′) = {Zk}). However this is a contradiction, since this implies the existence of node u that is

topologically higher than u∗ in the set Λ0(vi∗). It follows from eq. (2.6) that WP ′(u∗) = WP (u∗).

Next, we claim that WP ′
new(u∗) = WP

new(u∗) ∪ {WN+1}. To see this consider the following series

of arguments. Let the singleton subset ∆P (vi∗ , vj∗) = {W ∗}. Note that ψP (vi∗ , vj∗) = 0. This

implies that there exist v ∈ Du∗ and v′ ∈ Cu∗ such that v and v′ meet above u∗ and recover the file

W ∗ where (v, v′) 6= (vi∗ , vj∗). Thus, as ZP
′
(u∗) = ZP (u∗), we can conclude that

∆P ′(u∗, u∗) = Rec(ZP
′
(u∗),DP

′
(u∗))

= Rec(ZP (u∗),DP
′
(u∗))

= ∆P (u∗, u∗) ∪ {WN+1}.

www.manaraa.com

115

Furthermore, in the following argument we show that WP ′
new(u∗) = WP

new(u∗) ∪ {WN+1} holds for

node u∗. We have,

WP ′
new(u∗) = ∆P ′(u∗, u∗) \WP ′(u∗)

= ∆P (u∗, u∗) ∪ {WN+1} \WP (u∗)

= WP
new(u∗) ∪ {WN+1}, (since WN+1 /∈WP (u∗)).

For u such that u∗ � u we inductively argue that WP ′
new(u) = WP

new(u). To see this suppose that

u∗ = ur. It is evident that ∆P ′
rl (u) = ∆P

rl(u). Next, ∆P ′
lr (u) = ∆P

lr(u) since Zk /∈ Z(ul) \ Z(ur).

Thus,

WP ′
new(u) = ∆P ′

rl (u) ∪∆P ′
lr (u) \WP ′(u)

= ∆P
rl(u) ∪∆P

lr(u) \WP ′(u)

= ∆P
rl(u) ∪∆P

lr(u) \WP (u) ∪ {WN+1}

= ∆P
rl(u) ∪∆P

lr(u) \WP (u) (since WN+1 /∈ ∆P
rl(u) ∪∆P

lr(u))

= WP
new(u).

Next, we note that W(u) = W(ur)∪Wnew(ur)∪W(ul)∪Wnew(ul). It is evident that WP ′(ul) =

WP (ul) and WP ′
new(ul) = WP

new(ul). Next, WP ′(ur) = WP ′(u∗) = WP (u∗) (from above) and

WP ′
new(u∗) = WP

new(u∗) ∪ {WN+1}, so that WP ′(u) = WP (u) ∪ {WN+1}.

As the induction hypothesis we assume that for any node u downstream of u∗, we have

WP ′
new(u) = WP

new(u) and WP ′(u) = WP (u) ∪ {WN+1}. Consider a node u′ such that u′r = u.

As before we have WP ′(u′l) = WP (u′l), W
P ′
new(u′l) = WP

new(u′l). Moreover, we have WP ′(u′r) =

WP (u′r) ∪ {WN+1} and WP ′
new(u′r) = WP

new(u′r), by the induction hypothesis, so that WP ′(u′) =

WP (u′) ∪ {WN+1}.

Next, we argue similarly as above that ∆P ′
rl (u′) = ∆P

rl(u
′) and ∆P ′

lr (u′) = ∆P
lr(u

′) and the

sequence of equations above can be used to conclude to that WP ′
new(u′) = WP

new(u′). We conclude

that L′ = L+ 1.

www.manaraa.com

116

A.0.4 Proof of Claim 5

Proof:

W.l.o.g we assume that |Γl| ≥ |Γr| for all u ∈ T . We identify the set U as the set of nodes in

T such that Γr * Γl. Let U∗ ⊂ U denote the set of nodes in U that are highest in the topological

ordering.

Consider a node u∗ ∈ U∗. Note that since |Γl| ≥ |Γr|, there exists an injective mapping

φ : Γr \ Γl → Γl \ Γr. Let Z(u∗r) = {Zi1 , . . . , Zim}. We construct the instance P ′ as follows. For

each v ∈ Du∗r suppose D(v) = {Xd1,...,dK}. For j = 1, . . . ,m, if dij ∈ Γr \Γl, we replace it by φ(dij);

otherwise, we leave it unchanged. In other words, we modify the delivery phase signals so that the

files that are recovered in Tu∗(r) are a subset of those recovered in Tu∗(l).

As our change amounts to a simple relabeling of the sources, for u ∈ Tu∗(r) we have |WP ′
new(u)| =

|WP
new(u)|. For any u � u∗ we have ΓPr (u) ⊆ ΓPl (u). Similarly, we can show that ΓP

′
r (u) ⊆ ΓP

′
l (u).

We note that ΓP
′

and ΓP only differ in files such as Wd where d is in the domain of φ(·), i.e.,

if Wd ∈ ΓP then Wφ(d) ∈ ΓP
′
. If there exist a file Wd ∈ ΓPr (u) with d in domain of φ(·) then

Wφ(d) ∈ ΓP
′

r (u) and from ΓPr (u) ⊆ ΓPl (u) we have Wφ(d) ∈ ΓP
′

l (u). Thus, we have ΓP
′

r (u) ⊆ ΓP
′

l (u).

This indicates that after applying this change, the property Γr ⊆ Γl still holds in P ′ for all nodes

u that are upstream of u∗. Furthermore, the relabeling of the sources only affects u ∈ T ′ such that

u∗ � u. Note that WP ′(u∗) ⊂WP (u∗) (the inclusion is strict since at least one source in Γr \ Γl is

mapped to Γl \ Γr) since we have ΓP
′

r ⊆ ΓP
′

l and ΓP
′

l = ΓPl .

Now, we note that

∆P ′
rl (u∗) = ∆P

rl(u
∗), and

∆P ′
lr (u∗) = ∆P

lr(u
∗),

where the first equality holds since ZP (u∗r) = ZP
′
(u∗r), Z

P (u∗l) = ZP
′
(u∗l) and DP (u∗l) = DP

′
(u∗l).

The second equality holds since our modification to the delivery phase signals in Tu∗(r) does not

affect files that are recovered from ZP (u∗l) \ ZP (u∗r). It follows therefore that |WP ′
new(u∗)| ≥

|WP
new(u∗)|.

www.manaraa.com

117

We make an inductive argument for nodes u that are downstream of u∗; w.l.o.g. we assume

that u∗ ∈ Tu(r). Specifically, our induction hypothesis is that for a node u that is downstream of

u∗, we have WP ′(u) ⊆WP (u), ∆P ′
rl (u) = ∆P

rl(u) and ∆P ′
lr (u) = ∆P

lr(u).

Now consider a node u′ downstream of u such that u′r = u. We have, W(u′) = W(u′l) ∪

Wnew(u′l)∪W(u)∪Wnew(u). Note that we can express W(u)∪Wnew(u) = W(u)∪∆rl(u)∪∆lr(u).

It is evident that WP ′(u′l) = WP (u′l) and WP ′
new(u′l) = WP

new(u′l). Moreover, by the induction

hypothesis, WP ′(u) ⊆WP (u) and ∆P ′
rl (u)∪∆P ′

lr (u) = ∆P
rl(u)∪∆P

lr(u). Thus, the induction step is

proved.

We have shown that after applying the changes for u∗, the condition Γr * Γl will not hold for

u � u∗. For each node u ∈ U let d(u) denote the number of edges in path connecting u to the root

node. Our modification procedure is such that d∗ = maxu∈U d(u) is guaranteed to decrease over

the course of the iterations. Indeed, if |U∗| = 1, then at the end of the iteration d∗ will definitely

decrease. If |U∗| > 1, then d∗ will definitely decrease after the modification procedure is applied to

all the nodes in U∗. Thus, the sequence of iterations is guaranteed to terminate. This observation

concludes the proof.

As we have shown, the modification procedure is such that at the end of the operation u∗ is

removed from U . Therefore, each node in T will be involved in the modification procedure at most

once. In Appendix A.0.5, we show that there are 2(α + β) nodes in T . Thus, the modification

procedure requires at most 2(α + β) iterations to terminate. At each iteration we only need to

apply the mapping φ(·) to the indices of the delivery nodes connected to u∗. The complexity of

this step is at most αβ. Therefore, the complexity of the modification is at most O(α2β + αβ2).

Claim 10 When β̂l = min(βl,K) and β̂r = min(βr,K) we have min(β̂l,K − β̂r) = [min(βl,K −

βr)]
+ and min(β̂r,K − β̂l) = [min(βr,K − βl)]+.

www.manaraa.com

118

Proof: First, we consider the case where βl+βr ≤ K so βl ≤ K−βr and [min(βl,K−βr)]+ = βl.

By assumption, βl + βr ≤ K implies β̂l + β̂r ≤ K thus min(β̂l,K − β̂r) = β̂l = βl. We now consider

the βl + βr ≥ K case which in turns leads to β̂l + β̂r ≥ K. Therefore,

min(β̂l,K − β̂r) = K − β̂r = K −min(K,βr)

= max(0,K − βr) = [K − βr]+ = [min(βl,K − βr)]+.

The same argument will show that min(β̂r,K − β̂l) = [min(βr,K − βl)]+.

Claim 11 Consider the integers α, αl, αr, β, βl, βr,K so that α = αl + αr and β = βl + βr. Then

αmin(β,K) = αl min(βl,K) + αr min(βr,K)

+ αl[min(βr,K − βl)]+ + αr[min(βl,K − βr)]+.

Proof: First, we consider the case where β ≤ K thus βl ≤ K − βr and βr ≤ K − βl. Then,

the above relation reduces to αβ = αlβl + αrβr + αlβr + αrβl which is true. For the case β ≥ K,

the relation reduces to αK = αl (min(βl,K) + [K − βl]+) + αr (min(βr,K) + [K − βr]+). However

min(βl,K) = K − [K − βl]+ and min(βr,K) = K − [K − βr]+ and the result follows.

A.0.5 Complexity of the Algorithms 1, 2, 3, and 4

In this part we discuss the time-complexity of the algorithms used in this paper. Before

proceeding, we note that the directed in-tree corresponding to the problem instance P (T , α, β, L,N,K)

contains α+β leaves and a single root. The degree (total number of incoming and outgoing edges)

of the leaves and the root is 1. Based on Claim 1 the intermediate nodes have a total degree of 3.

Thus,

2|A| = α+ β + 1 + 3(|V | − α− β − 1)

= 3|V | − 2α− 2β − 2.

www.manaraa.com

119

On the other hand, since the undirected version of T is a tree we have |A| = |V | − 1. Solving these

two equations yields

|V | = 2(α+ β),

|A| = 2(α+ β)− 1.

A.0.5.1 Complexity of the Algorithm 1

The complexity of computing ∆(vi, vi) in second line of the algorithm is less than αβ. As there

are α + β leaves thus the complexity of lines 1-5 of the algorithm is O(α2β + αβ2). The while

loop in the algorithm goes over all nodes except the leaves exactly once. Thus, the while loop is

executed α+ β times. At each phase of the while loop, computing ∆(u, u) has the largest running

time among the other operation and its complexity is less than αβ. Therefore, the complexity of

the while loop is also O(α2β+αβ2). Thus, this algorithm has a time-complexity of O(α2β+αβ2).

A.0.5.2 Complexity of the Algorithm 2

As there are 2(α+ β) nodes in T and |Wnew(u)| ≤ αβ, the complexity of the initialization part

is O(α2β + αβ2). In the remaining steps of the algorithm, the main complexity of the inner for

loop is in finding the meeting point of vi and v′. It is not hard to see that the complexity of finding

this meeting point is at most (α+ β), i.e., number of edges in T . Therefore, the complexity of this

part is O(α2β + αβ2). Putting these together, complexity of the algorithm is O(α2β + αβ2).

A.0.5.3 Complexity of the Algorithm 3

The initialization part of the Algorithm 3 takes O(1) running time. The while loop at “Tree

Construction and Cache Nodes Labeling” goes over all nodes in T exactly once. As the operation

inside the loop takes O(1) time, the complexity of this part of the algorithm is O(α+β). The third

part of the algorithm is “Delivery Nodes Labeling”. It is not difficult to see that the first for loop

in this part requires at most β running times. Also, the second for loop takes O(αβ) running time.

Thus, complexity of this part is at most O(αβ). Finally, as we have shown in proof of the Claim 5,

www.manaraa.com

120

the complexity of “Modifying Delivery Phase Signals” is O(α2β+αβ2). Putting all these together,

complexity of Algorithm 3 is O(α2β + αβ2).

A.0.5.4 Complexity of the Algorithm 4

The algorithm needs O(αβ) memory units to save Nsat(a, b,K) for 0 ≤ a ≤ α and 0 ≤ b ≤ β.

Once Nsat(ã, b̃, K) is known for (ã, b̃) ∈ I(a, b) then we are able to compute Nsat(a + 1, b + 1,K)

by using the recursive relationship.

The time complexity of populating the Nsat values can be determined as follows. At the

initialization step we fill the first two rows and columns of the matrix Nsat corresponding to a = 0, 1

and b = 0, 1 respectively. Following this initialization step, the remaining rows and columns are

populated. It is clear the that the initialization takes O(α+β) time. In the main loop we compute

each entry of matrix Nsat once. This computation takes at most O(αβ) operation as we look for

minimum over set I(a, b) whose size is at most O(αβ). As we compute all entries of the matrix

Nsat and each entry takes O(αβ) running times thus time complexity of the algorithm is O(α2β2).

The required memory is O(αβ) as determined above.

www.manaraa.com

121

APPENDIX B. SUPPLEMENT FOR ASYNCHRONOUS CODED

CACHING

B.0.1 Equivalence of LPs

We show that both linear programming problems in (3.1) and (3.2) result the same solution.

Actually, we show that the feasible sets of both problems are equivalent and since both problem

have the same objective function this implies that they return the same optimal value.

We first show that each feasible point in problem (3.1) is also a feasible point in (3.2). Let

suppose that {xU (`), y{i,f}(U)} is a feasible point of (3.1). We set x
(i)
U (`) = xU (`) − α(i)

U (`) with

α
(i)
U (`)’s are chosen so that 0 ≤ α(i)

U (`) ≤ x(i)
U (`) and,

∑
`∈IU

α
(i)
U (`) =

∑
`∈IU

xU (`) −
∑

f∈F{i,U}

y{i,f}(U). (B.1)

Then, we claim that {xU (`), y{i,f}(U)} together with the new defined x
(i)
U (`)’s form a feasible point

in (3.2). To show this, we only need to show that

∑
f∈F{i,U}

y{i,f}(U) =
∑
`∈IU

x
(i)
U (`),

and that 0 ≤ x
(i)
U (`) ≤ xU (`) and x

(i)
U (`) ≤ |Π`|. The first condition holds by the way we choose

α
(i)
U (`) and (B.1). Moreover, by such a setting of x

(i)
U (`) and that 0 ≤ xU (`) ≤ |Π`| and 0 ≤ α(i)

U (`) ≤

x
(i)
U (`) the other conditions hold as well. This implies that each feasible point in (3.1) is a feasible

point in (3.1) as well.

www.manaraa.com

122

Now, we show that each feasible point in (3.2) is a equivalent to a feasible point in (3.1). To

see this, we just need to show that

∑
f∈F{i,U}

y{i,f}(U) ≤
∑
`∈IU

xU (`),

holds. This can be verified by the fact that x
(i)
U (`) ≤ xU (`) and

∑
f∈F{i,U}

y{i,f}(U) =
∑
`∈IU

x
(i)
U (`).

Therefore, we showed that problems (3.1) and (3.2) have the same optimal value.

B.0.2 Quadratic Projection and Primal Recovery in Dual Decomposition

For the projection of γ̃
(i)
U (`, n) and ζ̃`(n) to the constraint space we simply set ζ`(n) = max

(
ζ̃`(n), 0

)
and {γ(i)

U (`, n), ∀ i ∈ U} is obtained via the following quadratic optimization.

min
{v(i)U : ∀ i∈U}

∑
i∈U

(
v

(i)
U − γ̃

(i)
U (`, n)

)2
s.t.

∑
i∈U

v
(i)
U = 1. (B.2)

In (Lun et al., 2006, Appendix I) an algorithm has been proposed to solve (B.2). This solution

can be explained as follows. For fixed ` ∈ [β] and for each U ∈ U`, we sort γ̃
(i)
U (`, n) so that

γ̃
(i1)
U (`, n) ≥ . . . ≥ γ̃(i|U|)

U (`, n). We take k̂ to be the minimum k such that

1

k

1−
k∑
j=1

γ̃
(ij)
U (`, n)

 ≤ −γ̃(ik+1)
U (`, n)

or let k̂ = |U | if such a k doesn’t exist. Then γ
(ij)
U (`, n) = γ̃

(ij)
U (`, n) +

1−
∑k̂
l=1 γ̃

(il)

U (`,n)

k̂
if j ∈ [k̂] and

zero otherwise.

The initial setting for the dual variables is chosen as γ
(i)
U (`, 0) = 1/|U |, for i ∈ U, U ∈ U`, ` ∈ [β],

and ζ` = 0 for ` ∈ [β].

Primal Recovery: After solving the dual problem, the primal variables, i.e., xU (`, n)’s, are recovered

by the method of Sherali and Choi (1996) whereby

xU (`, n) =
n∑
l=1

µl(n)

(
max
i∈U

x
(i)
U (`, l)

)
(B.3)

www.manaraa.com

123

where µl(n)’s are sequence of convex combination weights for each non-negative integer n, i.e.∑n
l=1 µl(n) = 1 and µl(n) ≥ 0 for all l = 1, . . . , n. In Lun et al. (2006), it has been shown that if

the step size θn and convex combination weights µl(n) are chosen so that

• ηl,n ≥ ηl−1,n for all l = 2, . . . , n and n = 0, 1, . . .,

• ∆max
ηn → 0 as n←∞, and

• η1,n → 0 as n←∞ and ηn,n ≤ δ for all n = 0, 1, . . . for some δ > 0,

then {xU (`, n)}`∈[β], U∈Ul is an optimal primal solution. Here ηl,n = µl(n)
θn

and ∆max
ηn = maxl=2,...,n{ηl,n−

ηl−1,n}. Some sequences for θn and µl(n) that satisfy the above conditions has been proposed by

Lun et al. (2006) . Among them we choose µl(n) = 1
n and θn = n−α where 0 < α < 1. Then, the

primal solution will be updated as,

xU (`, n+ 1) =
n

n+ 1
xU (`, n) +

maxi∈U x
(i)
U (`, n)

n+ 1
. (B.4)

B.0.3 Linear Programming with Front Loading

We note that in the above example if we transmit B3 ⊕ C2 instead of transmitting A4 then

the online solution would be feasible. This property of the above counterexample guides us to

another algorithm so that at each arrival time and among the feasible solutions consistent with

the previously transmitted equations we pick the solution in which it has minimum transmission.

Then we front load the solution. We show that even using this algorithm there is no guarantee on

feasibility. To this aim, we have the following counterexample.

Example 16 We consider an asynchronous coded caching system with K = 6 users, N = 6 files,

and M = 1. The arrival times and deadlines of each user along with the user groups of the offline

solution are brought in Fig. B.1 (a).

As we can see, the offline solution is so that the server has to transmit an equation at each time

slot. The bottleneck of this example is transmission in the third time slot. In Fig. B.1 (b) the first

two possible steps of the online solution with solving lp with front loading is shown.

www.manaraa.com

124

{1} {1, 2} {2} {2, 3}{3, 4}{2, 4}{1, 4}{1, 3}{3, 5}{4, 5}{1, 5}{2, 5}{3, 6}{4, 6}{5, 6} {6} {6}
τ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T2 T3 T4 T5 T6 ∆1 ∆2 ∆3 ∆4 ∆5 ∆6

(a)

{1} {1, 2} {1} {2, 3}{3, 4}{2, 4}{1, 4}{1, 3}{3, 5}{4, 5}{2, 5} {2} {3} {4} {5}
τ

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T2 T3 T4 T5 ∆1 ∆2 ∆3 ∆4 ∆5

(b)

Figure B.1: A counterexample of LP solution with front loading.

In the third time slot there is no privilege in choosing {1} over {2} after solving LP with front

loading. Indeed, both choices are optimal solution of the LP problem with front loading. If the

server choose to transmit user group {1} instead of {2} then the online solution will be infeasible.

Otherwise, the online solution will follow the exact procedure of the offline solution in Fig. B.1. In

Fig. B.1 (b) we show how the online algorithm get stuck when the server chooses to transmit {1}

at the third time slot.

B.0.4 Counter-examples to Intuitive Heuristics

At the top level the online problem bears resemblance to scheduling on jobs on a server. Each file

request needs to be processed within a certain time and the transmission of a subfile can be viewed

as equivalent to the processing time of a task within a job. Nevertheless, as coded transmission

simultaneously serves multiple users, the problem at hand also exhibits important differences.

Algorithms such as earliest-deadline first (EDF) have been well investigated in the scheduling

literature Lu et al. (1999); Spuri and Buttazzo (1994); Ramamritham et al. (1990) and are known

to be optimal under certain situations. We now show that an EDF-like algorithm can fail for the

online scenario. Specifically, we demonstrate that the online algorithm is infeasible even though a

feasible offline algorithm exists.

Example 17 We consider a system with K = N = 4, M = 1, and r = 1 with the cache placement

policy in Maddah-Ali and Niesen (2014). The files are denoted A,B,C and D. The arrival times

and deadlines are depicted in Fig. B.2. W.l.o.g. we assume that users 1, . . . , 4 are interested in

www.manaraa.com

125

A2 ⊕B1 A3 ⊕ C1 B3 ⊕ C2 A4 ⊕D1 C4 ⊕D3 B4 ⊕D2
τ

1 2 3 4 5 6 7

T1

T2
T3

T4

Figure B.2: A counterexample of immediate transmission with priority of closest deadline. Available time

slot for each user is determined by a two direction arrow.

files A,B,C and D respectively. Note that the total number of unknowns are 4× 3 = 12. Fig. B.2

shows an offline solution for this system where each of the six time-slots benefits two users (the

maximum possible). Therefore, any online algorithm that transmits equations that benefit only a

single user in any of the slots will definitely be infeasible.

In an EDF-like algorithm, at each step, the server transmits an equation benefiting the user(s)

with the closest deadline. In time slot [1, 2) the only choice is sending A2 ⊕ B1 as only two users

are active and this equation benefits both of them. In [2, 3), the server chooses to benefit users 1

and 3 as their deadlines are before user 2. The problem emerges in time slot [3, 4); the EDF policy

will require transmission of A4 as user 1 has the closest deadline. However, there is no equation

involving A4 that benefits two users. Thus, transmission of A4 will definitely result in an infeasible

solution.

The previous counter-example indicates that it may be preferable to transmit equations that

benefit the maximum number of users while ensuring feasibility in a best-effort sense at each time-

instant. This is in fact the key idea of our proposed heuristic for the online case. Specially, we

repeatedly solve a new LP whenever a new user request comes while fixing the previous variables

to their earlier values. Coded transmission corresponding to these variables continues (albeit with

new features such as coding across missing subfiles for the same user). Furthermore, within the

class of feasible solutions, we pick those where the equations that benefit a large number of users

are transmitted first. Nevertheless, we emphasize that even this algorithm can fail as compared

to the offline solution under certain adversarial choices of request arrival times/deadlines and file

requests. We discuss a specific counter-example in the Appendix B.0.3.

	Coded caching: Information theoretic bounds and asynchronism
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Coded Caching
	1.1.1 Lower Bounds on the Coded Caching
	1.1.2 Asynchronous Coded Caching

	2. LOWER BOUNDS ON CODED CACHING
	2.1 Background, Related Work and Summary of Contributions
	2.1.1 Related work
	2.1.2 Summary of our contributions

	2.2 Lower Bound on R(M)
	2.2.1 An analytic bound on the saturation number
	2.2.2 Best lower bound for a fixed M

	2.3 Multiplicative Gap Between Upper and Lower Bounds
	2.3.1 Region I: 0 M max(1,N/K)
	2.3.2 Region II: max(1,N/K) < M N/2
	2.3.3 Region III: N/2 < M N

	2.4 Lower Bounds on the Other Variants of the Coded Caching Problem
	2.4.1 Caching in device to device wireless networks
	2.4.2 Coded caching with multiple requests
	2.4.3 Decentralized coded caching

	2.5 Comparison with Existing Results
	2.5.1 Comparison with cutset bound
	2.5.2 Comparison with lower bound of sengupta2015improved
	2.5.3 Comparison with lower bound of ajaykrishnan2015critical
	2.5.4 Comparison with results in tian2015note
	2.5.5 Numerical comparison of the various bounds

	2.6 Conclusions and Future Work

	3. ASYNCHRONOUS CODED CACHING
	3.1 Background, Related Work and Summary of Contributions
	3.1.1 Main contributions
	3.1.2 Related work

	3.2 Problem Formulation and Preliminaries
	3.3 Offline Asynchronous Coded Caching
	3.3.1 Linear programming formulation
	3.3.2 Interpretation of feasible point of (3.1) as a coding solution
	3.3.3 Dual decomposition based LP solution

	3.4 Online Asynchronous Coded Caching
	3.4.1 Necessity of coding across missing subfiles of a user
	3.4.2 Recursive LP based algorithm

	3.5 Simulation Results and Comparisons with Prior Work
	3.5.1 Offline scenario simulation
	3.5.2 Online scenario simulation
	3.5.3 Scenario where individual subfiles have deadlines

	3.6 Conclusions and Future Work

	A. PROOFS FOR LOWER BOUNDS
	A.0.1 Proof of Claim 1
	A.0.2 Proof of Claim 3
	A.0.3 Proof of Lemma 1
	A.0.4 Proof of Claim 5
	A.0.5 Complexity of the Algorithms 1, 2, 3, and 4

	B. SUPPLEMENT FOR ASYNCHRONOUS CODED CACHING
	B.0.1 Equivalence of LPs
	B.0.2 Quadratic Projection and Primal Recovery in Dual Decomposition
	B.0.3 Linear Programming with Front Loading
	B.0.4 Counter-examples to Intuitive Heuristics

